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Abstract

High-speed digital signal processing has a wide range of applications including.

radar, sonar, image processing, and target acquisition. The calculation of the Discrete

Fourier Transform (DFT) used in these applications has long been a significant "

bottleneck for high-speed processing. Previous AFIT students have adopted a Prime Fac-

tor Algorithm (PFA) method using Winograd Fourier Transform (NNTT) processors.

Three WFT processors are pipelined into a system capable of computing a 4080-point

DFT on complex data approximately every 120 microseconds when operating with a 70 '2

MHz clock.

This thesis effort addressed the design and implementation of PFA controller chip

and interconnecting memory modules between the WFT processors. The PFA controller

is an application specific processor to control the flow of information in the pipeline,

interface to the WTT processors, monitor pipeline status, and take corrective action in

the presence of faults. The interconnecting memory modules buffer the data coming out

of a WFT processor and going into another allowing concurrent reading and writing.

The PFA controller chip was designed, simulated, and submitted for fabrication

through MOSIS. Twenty-eight 16-bit registers store the pipeline information. An
S

arithmetic/logic unit (ALU) computes data transformations. A read only memory stores

the microcode. A control sequencer sequences through the proper code segments. Finally, V

special circuitry interprets the fault information and reconfigures the pipeline. I.
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This thesis effort included writing a microcode assembler to to raise the user inter-

face to the AFIT-XRO.M silicon compiler. Raising the user's level of abstraction to

mnemonic microcode, while still providing an error free path to silicon layout, reduces

chances for error in the microcode specification. A generic microcode assembler tool was

created as an extension for use with other application specific processors. This tools gen-

erates a microcode assembler from a word for;.,at and a translation file The assembler -

will output a file compatible with the XROM compiler. a VIIDL description of the

XROM, a listing file, a reference file, and a reverse assembly. This tool was tested on two p

other AFIT theses and a computer architecture class

A prototype memory chip was designed and fabricated in 3 micron CMOS through

MOSIS, to test the I-transistor memory cell, the wordline selectors, and the sense

amplifiers. Simulations predict an access time of 1Ons. A larger memory was designed.

simulated, and submitted for fabrication through MOSIS. It contains storage for 272

words of 32 bits each. It is dual ported and permits concurrent reading and writing of 24

bit data. The memory also includes error control circuitry for single error correction and A

double error detection. p

xii
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DESIGN AND IMPLEMENTATION OF A

"* "VLSI PRIME FACTOR ALGORITHM PROCESSOR

CHAPTER I

Introduction *

I.I. Background -

The military has a demonstrated interest in high-speed digital signal processing

5.;.

(DSP). Digital signal processing is used in a wide range of applications including radar, I,.€

sonar, image processing, voice processing, artificial intelligence, and target acquisition.

Applications such as these require data from sample points to be processed as near to

real-time as possible with a reasonable amount of resolution. A reasonable amount of

resolution is determined by the importance of the application and how accurate the

results must be. Since resolution increases with the number of points sampled, it is logi-

cal to increase the number of sample points. Unfortunately, as the number of sample

points increases, the number of operations increases as the square of the number of sam- %

pie points (i.e., O(N2 )).

Many current DSP applications involve computation of the Discrete Fourier

Transform (DFT) which uses only a finite set of sampled signal values instead of the ori-

ginal analog signal. Using a finite set of points allows the signal to be processed and

stored on a digital computer. The DFT, in summation form, is as follows:

C or. r



N -

S N-1 ',:i x(,)=~ WE N =O,I,...,N-1 (1.1)
n 0

where W sub N e sup {-j(2 pi /N)). Since the number of computations grows as

O(N2 ) when computed as a sequence of inner products, the DFT is not usually computed

directly. Instead, a class of algorithms developed in 1965 by Cooley and Tukey [Coo65]

is often used which capitalize on the symmetry in the DFT to reduce to complexity of

computation. This class of algorithms, known as Fast Fourier Transforms (FFTs),

reduces the number of operations from being proportional to the square of the number of

sample points, as in the DFT, to the number of sample point times the log of the

number of sample points (i.e., O(- log2N)). The introduction of the FFT made many r%
22

DSP applications possible on digital computers.

Prior to the introduction of very large scale integration (VLSI), most DSP computa-

tions were performed on-line by general purpose computers, requiring large amounts of

time, or off-line by special purpose banks of circuit boards using medium scale, or small
4%

scale integration (MSI or LSI respectively). Because the constraints of throughput and

blocklengths were so high, real-time computation was not possible. The increased speed

and density now available in VLSI, will allow certain DSP functions to be implemented

on a single chip.

One way to further increase the speed of the DFT is to reduce the number of multi-

plications since these are the most consuming. In 1978, Winograd showed a way to

reduce the number of multiplications of a DFT while keeping the number of additions

approximately equal. He also proved that his class of algorithms, known as Winograd

Fourier Transform Algorithms (WFTs), contain the minimum number of multiplication
.4

required for computation of a DFT [Win78]. Winograd's large algorithms, however, do

j ., -.

.. o4-
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not easily map into VLSI because of their size. But, when the small algorithms are com-

bined with the Good-Thomas Prime Factor Algorithm (PFA), they easily map into VLSI

due to their small size and regularity [Lin84J.

In 1985, a 4080-point transform was chosen as a representative system by the AFIT

VLSI Design Group. The system consists of three WFTs of lengths 16, 15, and 17 pipe-

lined together with interconnecting memory modules and a PFA controller. The block

diagram of the system is shown in Figure 1. The goal of the WFT-PFA project is to

produce a real-time signal processing system. With the PFA operating at 20MHz and

each of the WTTs operating at 80MHz, one 4080-point transform will be computed every

120 seconds.

1.2. Problem Statement

The first problem of this thesis effort will be to design the memory modules and

implement one in 3-micron CMOS. The second problem will be to design the Prime Fac-

tor Algorithm controller chip and implement it in 3-micron CMOS.

1.3. Scope

This thesis will include the design and implementation of the interconnecting

memory modules and the PFA controller. First, the memory module will be architectur-

ally specified, layed out in VLSI, and sent for fabrication; second, the PFA controller will

be architecturally specified, laid out in VLSI, and sent for fabrication; third, both chips

will be tested to ensure proper operation and validation.

3 n
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16 15 .1-7

Figure 1 4080-Point Processor

1.4. Approach

This thesis will include the design and implementation of the interconnecting

memory modules and the PFA controller. First, the problem requirements and their

impact on the design will be analyzed. Second, the architectural descriptions for both

chip will be developed. Third, the architectural description will be translated into gate-

level descriptions and from gate-level descriptions into VLSI Fourth, the completed

designs will be simulated to verify the design Fifth, the simulated designs will be sent

for fabrication through MOSIS.-

.-. o,.]z 4



1.6. Summary of Current Knowledge

1.6.1. Digital Signal Processing. The current state of fast signal processing

algorithms was forged in 1965 by Cooley and Tukey (Coo65'. They demonstrated a

method for computing n-point discrete Fourier transforms that required on the order of

O(NlogN) computations instead of O(N2). Their algorithm took advantage of the sym-

metry and periodicity inherent within DFTs to reduce the number of operations. This

method, known as the Fast Fourier Transform or FFT, brought signal processing to digi-

tal computer computation.

Another important contribution to the field was Winograd's work published in 1978

'\Vin78'. Winograd presented algorithms that significantly reduced the number of multi-

plications required while keeping the number of additions approximately equal. Wino-

grad also showed that his method required a minimal number of multiplications.

Because multiplications were much more computationally intensive than additions, his

method significantly reduced the computation time.

For a VLSI implementation, however, Winograd's algorithm lacked the modularity

needed for effective VLSI design and the number of additions grew quickly as the

transform size increased [Lin84'. One solution to this problem was given by Burrus who

combined the Good-Thomas Algorithm (PFA) tGoo7l with small Winograd transforms

[Bur83'. This combination took one-dimensional transforms and broke them into smaller

multi-dimensional transforms. Finally, Linderman Lin84' presented a way to embed the

PFA into VLSI using Winograd Fourier Transform Algorithm (WFT) processors. His

solution consisted of decomposing a 4080-point transform into three Winograd processors

of lengths 15, 16, and 17.

5
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In 1985, four theses were dedicated to the implementation of Linderman's solution.

Taylor presented the PFA and WFT theory, the overall signal processing architecture,

and the numerical precision results [Tay85J. He showed that architecture would indeed

compute a DFT and remain within acceptable numerical accuracy. Coutee described the

arithmetic circuitry for the WFT 16-point transform processor [Cou85]. Rossbach

presented the control circuitry for the VWTT 16-point [RosS5]. He was able to demon-

strate that the control sequencer operated correctly at speeds in excess of 60 M-Hz in 3-

CMOS. Finally, Collins presented a description and validation of the WFT 16-point in -.

the VHSIC (Very High Speed Integrated Circuit) Hardware Description Language, VHDL

tcol851.

I

In 1986, two theses were involved in the PFA-WFT project [Shc86 . Shephard com- K

pleted the VLSI design and implementation of the WFT16 chip and Hedrick discussed

the memory modules and the PFA controller. Hedrick established the foundations of the

PFA-ASP by describing the major functional blocks and their interfaces.

1.5.2. Memory Techniques. Weste and Eshragian classified memories into
0

three types, random access, serial access, and content addressable [Wes851. Random

access memory, at the chip level, was described as having an access time independent of

location. This contrasts with serial access and content addressable access where the time

needed to read or write a value was variable depending on location. Random access

memories (RA.0s) may be further classified into read only (ROM) or read and write (usu-

ally referred to as RAM). ROMs are generally denser than RANis but they are not as

flexible due to the permanency of the data.
'..,

RAMs and ROMs can be further be divided according to whether they are static or

dynamic. In a static memory, the value of the data is stored with some type of latch,

6 '%

N" ~ .~I .* - I



whereas in a dynamic memory, the value is stored with some type of charge on a capaci-,F "
tor. Because the dynamic memory is stored on a capacitor, its charge will degrade and

must be refreshed within a certain time interval. The advantage of dynamic memories is

that they are much smaller than their static counterparts and use less power [Muk86].

Dynamic memories are smaller because there is no feedback circuitry within the memory

cell to keep the location refreshed. The disadvantages are that they are hard to design,

somewhat slower than static memories, and more suspectable to soft errors (errors caused

by transient radiation).

Several authors described a dynamic memory consisting of a single transistor

[Gla85, Muk86, Wes85]. In this type of memory cell, the charge was stored on a capacitor

and a single transistor acted as a gate between the bit line and the capacitor. The value

was written and read via the bit line. Various techniques for making the capacitor have

been implemented including a double polysilicon method and a trench method [Rid791.

These methods tried to increase the amount of capacitance in the memory cell by exploit-

ing non-standard techniques.

The most difficult part of a one-transistor memory cell is the sense amplifier. When

a cell is read, the resultant value on the bit line is determined by charge sharing between

the bit line and the storage capacitor. Because the storage capacitor is so small com-

pared to the bit line, when the cell is read, there is little voltage change in the bit line.

To detect this small change, a very sensitive amplifier is needed. A sense amplifier will

amplify the change to levels that correspond to digital logic values.

In 1985, Shinn designed a double stage differential amplifier with current mirror

active loading {ShiS85. He detected a differential of 0.01 volts when reading the value

and its complement. Grebene fully described the transfer characteristics and gain of such

7
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_.,an amplifier in 1984 [Gre84]. He found that the gain was directly proportional to the

current loading and the width to length ratio of the gate on the nMOS devices to which

the voltages to be sensed were connected.

1.5.3. Error Control Coding. In the transmission or storage of data, noise or

other factors may cause erroneous results. In 1949, Shannon demonstrated that a proper

encoding of the information could reduce the number of ,rrors induced by a channel

iSha49 . Peterson and Weldon pointed out that as early as 1956, systems were being

built that demonstrated error correction and detection [Pet72].

A typical storage system with error correction and detection consists of encoding

the data before storage or transmission, the storing or transmission media, and decoding

to output the data [Hed861. With this kind of system, two different types of codes are

popular, convolution codes and block codes. In a convolution code, the encoded data is

(based on the current data as well as previous data, thus requiring a storage media associ-

ated the encoder. In a block code, the encoded data only depends on the current infor-

mation [Hed86 .

Since digital computers deal with information coded in binary digits, the discussion

of block codes can be limited to those with two symbols iLin831. Lin and Costello

developed algorithms for block codes of this type using syndromes and standard arrays.

Their algorithms will accomplish single error correction and double error detection.

1.6. Materials and Equipment

The materials and equipment needed for this thesis are available at AFIT. All the

computer aided design (CAD) tools require a UNIX environment. The tools from the

.. AFIT/VLSI CAD system will include CSTAT, a tool that determines whether nodes can

8
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be set to logic 1, set to logic 0, affect the outputs, or can be affected by the inputs,

STOVE, a circuit extraction tool, NOFEED, a tool which removes feedback paths for

simulation, and FIXROM, a tool that alters the XROM for simulation. The other CAD

tools are from the University of California at Berkeley. These tools are distributed each

year to various academic institutions. The tools necessary for this thesis include MAGIC,

a VLSI layout tool, MEXTRA, a circuit extraction tool, ESIM, a switch level simulator,

CRYSTAL, a performance analyzer for VLSI circuits, SPICE, a timing analysis tool, and

CIFPLOT, a tool to plot VLSI circuits. MAGIC requires either a SUN Workstation or

an AED 767 graphics terminal, both of which are currently available.

This thesis will also require the use of the VHDL language. This language is sup-

ported on AFIT's Classroom Support Computer (CSC) operating under the VAX/VMS

operating system.

A high-speed VLSI chip tester will also be needed. The tester is located in building

125 Area B.

1.7. Sequence of Presentation

Chapter 2 gives a detailed analysis of the requirements needed for the two problems ',
'5.'

of this thesis. First the memory is discussed and then the PFA controller. ,

Chapter 3 presents the architectural descriptions for the memory chip and the PFA

controller chip. It also discusses the algorithms involved in the error control coding for

the memory and the algorithms involved in the operation of the PFA controller.

Chapter 4 discusses the AFIT CAD environment and the VLSI design methodology.

This Chapter also discusses development and operation of the Generic Microcode Assem-

bier Tool.
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~ Chapter 5 presents the VLSI description of the circuits used to implement the

memory and the PFA controller. The development of the microcode is also presented.

Chapter 6 discusses the results of the thesis effort The features of the memory chip

as well as the PFA controller will be discussed. This chapter will also discuss the results

of the microcode assembler on this thesis effort and two other applications.

Chapter 7 discusses the conclusions from this work and presents recommendations

for future work. The future work will focus on testing the parts of the pipeline and

implementing the prototype.

Ire
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CHAPTER 2

Detailed Analysis of the Problem

2.1. Overview

The scope of this thesis effort is to design the memory modules and the PFA con-

troller chip. The memory modules are used as a buffer between the different stages of

the WFT-PFA pipeline. They allow concurrent reading and writing so that the XVTT

processors may operate asynchronously with respect to each other and keep data flowing

through the pipeline as it is needed and generated. The memory also encorporates single

error correction and double error detection based on an (n,k) linear systematic block code

to correct some simple errors and provide some error monitoring for the PFA controller.

0The PFA controller operates and monitors the pipeline. It is responsible for the

- pipeline data flows, fault monitoring and reconfiguration, if necessary, and communication

with the output host. The PFA controller is considered to be an application specific pro-

cessor containing elements to store and manipulate data, sequence through a set of

predetermined states, and communicate with outside activities.

2.2. Memory

There are six major areas in the memory design These are the interfaces, the data

flow, the storage cell, reading and writing, address selection, and error control coding.

The memory act as buffers for the data as it travels through the pipeline. Thus, there are

predetermined interfaces which the memories must conform to as set by the previously

designed WFT processors.

!1



2.2.1. Interfaces. The first constraints imposed on the memory chip are

those of the external interfaces. The PFA controller interfaces with the memory via a

LEFT(RIGHT) signal. This signal determines which side of the memory is written to and

which side is read from. Additionally, the memory is required to send two signals to the

PFA controller for error monitoring. The first signal is the Error Control Code Correct-

able (ECCC) and the second is the Error Control Code Uncorrectable (ECCU). The

ECCC signal flags the PFA controller that a single error occurred and was corrected.

The ECCU signal flags the PFA controller that a double error was detected and therefore

the data could be flawed, These signals will be discussed more in Chapter 5. The WFT

processors interface with several groups of signals, the address select lines, the input data

lines, the output data lines, and PRECHARGE. There are 12 address select lines capable

of addressing up to 4096 words Each word is 24 bits long, giving 24 input data lines and

24 output data lines. The WFT processor on the left, or host in the case of the first

memory. feeds the 12 write select addresses and the input data to the chip and the WFT

processor on the right, or host in the case of the last memory, feeds the 12 read select

addresses and receives the output data

2.2.2. Data Flow. The basic data flow through the chip is as follows: for the

input data, the inputs come into the chip, pass through the ECC encoding and are writ-

ten into the memory. for the output data, the values from the memory are passed

through the ECC decoding and then sent off-chip to the WFT processor. To include

concurrent reading and writing by two processors, two banks of the memory must exist

so that while one bank is written the other bank is read. To accomplish this, the

memory chip must be able to route data from the encoding circuitry to either side of the

memory and from either side of the memory to the decoding circuitry. Additionally, the

12
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PRECHARGE signal from the processors must also be routed to the side of the memory

* "the respective processor is using.

2.2.3. Memory Cell. The memory cell holds the value of the input data for

later retrieval. Ideally, the node should be able to store data for more than a mil-

lisecond. Two types of memory cells can be used, static or dynamic. In a static memory

cell, loss of data due to leakage is not a problem. Static memories, however, are large

compared to dynamic memories. Additionally, dynamic memories with no refresh are

much more dense and less complicated that static memories. Data must be read within a

certain time interval or it is lost without refreshing. One of the main results of this thesis

will be to determine whether the memory cell will indeed hold the value within the time

requirements.

2.2.4. Reading and Writing. The W"TT processors operate at a clock fre-e'
quency of 80MHz outputting a new word every other clock cycle. This means that a com-

yN

plete read or write must be accomplished at 40 MHz, or one operation every 25ns, for an

input/output bandwidth of 9.6x10 8 bits per second or total bandwidth of 1 .9 2 x1 0 g bits

per second.

A complete write includes inputting, encoding, address selection, and value storage.

A tomplete read includes address selection, value sensing, decoding, and outputting.

2.2.5. Address Selection. Each read or write must be able to access any one

of the 4096 words in a non-linear fashion. The order of accesses is determined by the

Prime Factor algorithms used to compute the Winograd Fourier Transform. Address

selection is also included in the 25ns access time. Several different approaches to address

selection will be discussed in Chapter 5.

13
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2.2.8. Error Control Coding. As described in Chapter 1, the Error Control '.'

Coding is used to provide error correction and detection The ECC included on the S

memory chip must be able to provide single error correction double error detection for

the 24 bits of data. The ECC to implement this consists of four functional blocks. The W

first block is used to encode the data before it is written into the storage array The

input data and the parity bits are then written in to the memory The second block is

used to decode the output data into the syndrome bits The third block takes the syn-

drome bits, computes the error vectors and generates the ECC" and EOOL signal dis- O

cussed earlier. The fourth block takes the error vectors and the output data and gen-

erates the data output to the VtTT processors.

2.3. PFA Controller

As stated earlier, the PFA controller must be able to process instructions and take

appropriate action on conditional data to accomplish its three major tasks. The first of .

these tasks is the ability to sequence through a set of predetermined control states. the

second is the ability to store and manipulate data, and the third is the ability to com-

municate with off-chip activities. The requirements for each of these major tasks will be

described below.

2.3.1. Control State Sequencing. To control the total state of the system.

the controller must be able to sequence through a set of predetermined states These

states control the functioning of the pipeline, the storing and manipulation of the data.

and the pipeline configuration. These states are expressed through the use of microin- •

structions. The microinstructions are stored in a read-only memory for execution The

control sequencer determines which of the microinstructions will be executed next based

14
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on the current microinstruction. The source of the next microinstruction can either be an

external address, the next sequential address, a field from the current instruction, or from

the top of the stack. The sequencer determines the source from a set of input conditions

and certain fields from the current microinstruction.
-s.

2.3.2. Storing and Manipulating Data. Subject to the control states, the

PFA controller must be able to store and manipulate data. The controller must be able

to store data which is passed from one stage of the pipeline to another after each DFT

computation. It must also store information regarding pipeline configuration, catas-

trophic pipeline failure, memory faults, NTT processor faults, error location, and indivi-

dual problem status.

The information that must pass from one stage of the pipeline to the other is the

scale factor. The scale factor is a 3-bit number indicating the number of scale bit on the

, Odata words. A 3-bit scale factor is input along with the data to each WFT processor.

After the WFT has completed the DFT it passes a new 3-bit scale factor. This scale fac-

tor is passed along to the next WFT processor in the pipeline. The total number of scale

bits is accumulated in the PFA controller for each problem as it travels through the pipe-

line Thus, the PFA controller must be able to store a 5 bit number for each problem at

worst case (I11 -111 11 t 10101).

In addition to storing the data, the controller must also have the ability to manipu-

late it as well. Information from one source may need to be transferred to other sources

or used in determining future controller states. This includes loading values from the

pads, driving values to the pads, shifting a storage location, comparing two storage loca,
,-".

tions, and adding storage locations. For example, it will be necessary to increment the

number of faults stored for a particular processor each time it fails.

"" 15



I%

~'a-

2.3.3. Communication. The controller must be able to interface with the

pipeline it operates and the host which submits DFTs for computation and receives the

results. The following is a list of those signals which the PFA controller must be able to
r-

input or output:

Memory Chips:

1. FLIP (from controller) - Used to determine which side of the memory is read from
or written to. One signal for all memory chips.

2. ECCC (to controller), Error Control Code Corrected - Used to indicate that a sin-
gle error occurred in a read operation from the memory and it was corrected. Each
memory has its own ECCC.

3. ECCU (to controller), Error Control Code Uncorrected - Used to indicate that an
error occurred on a read that could not be corrected. Each memory has its own
ECCU.

WFT processors:

1. WFTop (from controller), WFT Operate - Used to put the WFTs processors into
computation mode. All WFT processors share one WFTop signal.

2. WD (from controller) - Used to put the WFTs in the operational or watchdog
mode. Each pipeline stage has its own WD signal. (The signals described here in 2,

3, and 4 share the state/scale bus. This will be explained in Chapter 5)

3. SZO and SZ1 (from controller), SizeO and Sizel - Used to send the DFT size to the
\\TTs. Each pipeline stage has its own SZO and SZ1.

4. SCO, SC1, SC2 (bi-directionaO, Scale Factor 0,1,2 - Used to send the input data
scaling factors and receive the output data scaling factors. Each pipeline stage has
its own SCO, SC1, SC2. "

5. PE (to controller), Parity Error - Used by the WFTs to signal that a parity error

exists in the input data. Each pipeline stage has one PE signal.

6. WDerr (to controller), Watchdog Error - Used by the WATTs to signal that a

Watchdog Error has occurred. Each WFT processor has a B'Derr signal.

7. WFTdone (to controller), WFT Done - Used to signal that the WVFT has finished

a DFT. Each pipeline stage has one lTTdone signal..

S.-.
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8. LOAD (from controller), WFT Load - Used to signal a N'FT processor to receive
information on operation, scaling, and DFT size. Each WFT processor has its own
LOAD sign al.

HOST (these signals will be explained in Chapter 5):

1. PFAop (to controller), PFA Operate

2. PFAdone (from controller), PFA Done

3. LOADSTUFF (to controller), Load/Read PFA

4. Hs.4,HsS,Hs2,JHsl,HsO (to controller), Storage Select

5. H15-HO (from controller), Internal Data Output Lines

417
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CHAPTER 3

Architecture and Algorithms

3.1. Overview

This chapter discuss the architectures and algorithms used in the memory and the

PFA controller. First, the memory architectures will be presented and then algorithms

for the error control coding will be presented. Second, the general architecture for the

PFA controller will be discussed then the algorithms used to operate the controller and

the NTT processors will be developed, and finally, the resulting architecture will be

s hown.

3.2. Memory

The memory can be broken into three main sections, data flow, storage, and error

control coding. The data flow section deals with controlling the flow of data through the

chip. The storage section discusses the actual storage cells; how they are selected, written

to, or read from. Finally, the error control coding explains how the single error

correct ion,'dou ble error detection is accomplished.

3.2.1. Data Flow. As previously mentioned, the memory must be partitioned

into two halves to allow concurrent reading and writing. This partitioning is shown in

Fig. 2. The data initially enters into the memory chip from the input pads, from there

the data is passed through the input ECC circuitry and then to either memory side. A

control signal determines to which side of the memory the data is written After a side

of the memory is read, also determined by the control signal, the values output by the

-.



Outputs

Figure 2 Memory Chip Part ioning -

memory arrays pass through the output ECC circuitry and then off-chip through the

output pads.

3.2.2. Storage. The storage area consists of several units, the 'A(-rd select.

the memory cell, and the sense amplifier The word select unit input- thw address, linies

and determines which of the 4096 words will be selected for the read or wrlie )Peration

A memorv word consists of 32 storage cells activated for reading or writing 1-. a single

A ord select line When the value is read, the sense unit %Aill detect t h, l- red mni-er%

value and amplify it for furt her use in the chip

3.2.3. Error Control Coding. Frror ('on t r, I (4d Is t . c i l~e f A-

steps The first step to encode the input data and the seco)nd step is l d.d- T 1, I iti

from the memory before sending off-chip The next t W, sect ]-I) 'utl litic I li, J#-

of a svsternetic block code described by Lin and ( cst#,l Liril3 The i iiri irt

code were developed bY Mlajor Prescot in 19W')



3.2.3.1. Encoding For this memory, a message is defined as an input word of

24 bits and denoted by u where u=(uou 2 . . u,). With 24 bits, the maximum number

of distinct messages is 224 or 1.68x10 7 . The encoder transforms u into an n-tuple, v, 'a

where n>24. The mapping of u to v is one to one and the set of all vectors v is the

block code. Additionally, the 2 k code words (k = 24) form a k-dimensional subspace of

the vector space of all the n-tuples over the Galois field GF(2). Twenty-four linearly

independent code words, go,g .  g2, can be found from the block code such that

every code word in the block code is a linear combination of the 24 code words. The

resulting relationship between u and v is, -
P,,4

v=uogo+ulgl+ ' +U223. (31)

The 21 linearly independent code words can be arranged into a (24 x n) matrix, G. so

that.

go go'o go .. go,n-I %a

g1 910 9i' 9 1,n-

G= (3.2)

g3 923.0 923,A 23, n -1

G is considered to be the generator matrix for the linear block code. If

U U.?j. uII) is the word to be encoded, then the code word. v, is given as:

v =u G

20
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go

= (UoU .... U23)' (3.3)

= Uogo+u 19 1+ - u239 . .

A variation on the linear block code is the linear systematic block code. A linear

systematic block code divides the code word into two parts, the message part and the

redundant part. The message part consists of the original input bits and the redundant

part consists of parity-check digits which are linear sums of the input bits. For a linear

systematic (n, 24) code, the 24xn G matrix has the following form:

go Po,o Po,i Po,n-z 1 0 0..."

91 PLO P1,1 P1,n-23 0 1 0

G = =(3.4)

gm P23,0 p23. P23n-2 0 0 ... I

where p,, is a binary digit. Let P denote the first part of the generator matrix and 124

denote the 24x24 identity matrix. Then G = [PI 4]. The code word now becomes

V ("0O t," .. t'n _) (3,5).."

=(uo.u 1 .  u )G

The last 24 bits of the code word correspond exactly to the original 2.1 in bits the input

word and the first n-24 bits are the redundant parity-check bits. The equations used to

compute the first n- 4 bits are called parity-check equations and are of the form

21
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V = UOPOJ + UIP1,j + + U p2 3 ,P , (3.6)

for j = 0 to n-23. For our case we use 8 parity check bits making n=32. Appendix AII

shows the resulting P matrix. Using Eq. 3.6, the corresponding parity-check equations

from matrix P are:

VO = Uo+U 7 +u 8 +u1 4 +u 1 6 +u 21  (3.7a)

vj = Uo+UJ+Ug+UlS+UI7+U22 (3.7b)

V 2 = Ul+U 2 +U 8 +t 1 0 +UI1 8 +U 23  (3.7c)

V3 = U 2 +U3+Ug+Ull+UlB+Ulg (3.7d)

V4 = U 3 +U4+U 0 +U 2 +l 7 +U 20  (3.7e)

V= U4+US+II+UI3+UI8+U21 (3.7f)

v5 =u 5 +u 6 +u 1 2 +ul 4 +uIQ+ur- (3.7g)

V7= u 6 +u 7 +u 3 +IS+u2o+u23 (3.7h)

The code word v can now be expressed as:

V = (,,o . V7, U0, U.. 3),

where t'0 .... , t 7 are from Eqs 3.7a-h and u 0 , .... u23 are the original input word u.

3.2.3.2. Decoding Once v has been stored in the memory it may be exposed

to conditions which cause errors to appear. Because of the extra parity bits, the decoding

scheme will correct single errors and detect double errors.

Let r = (ro,r .. r 3 1) be the word read out of the memory. This word may or

may not be different from the word initially stored. Now let e be the vector sum of the

code word, v, and r such that,

e = v+r = (eo,e ..... e 3 l). (3.8)

where ej is the boolean exclusive-or of vi and ri. Alternately, r may be represented as the

vector sum of e and v.

22
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It is necessary to introduce another matrix associated with the block code. This

(n-k)xn matrix H, commonly referred to as the parity-check matrix, is defined so that I

any vector in the row space of G is orthogonal to the rows of H and any vector that is N R

orthogonal to the rows of H is in the row space of G. Thus, a codeword generated by G

solves the equation v.HT = 0. The parity-check equation may be written as follows:_p,

H [Ink P r  (3.9)

1 00 0 P0,0 Po.o Pi0 P23.0

0 1 0 0 PO,l Po,l PII P23,1 N

0 0 1 0 P0,2 P0.2 P1.2 P23,2
?N

0 0 0 1 Po,7 Po,; P1,7 P23,7

where pT represents the transpose of the matrix P.

When r is read, the decoder computes the following:

S= rHT = (SoS, . . . , s). (3.10)

This equation defines the syndrome, s, of r. Because v.HT = 0, r is a valid codeword if

and only if a = 0. If s $ 0 then the word read has been corrupted by errors. If the error

vector e is identical to a codeword then e+v represents a valid code word and r-HT = 0.

This condition is considered an undetectable error Since there exist 2 24-1 nonzero code-

TN
words, there exist the same number of undetectable error patterns. The HT matrix for

our (32,24) block code is shown in appendix A.

The corresponding syndrome digit equations are:

So = ro+r 8 +rls+r 6 +r 2 2 +r 2 4 +r2 g (3.11a)

s8 = r1 +r 8 +rg+rl7 +r23+r25 +r 3o (3.11b)

23
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82 = r 2 +rg+rlo+r, 6 +r 8 +r 2 r+r 3 l (3.11c)

83 = r3 +rl 0 +rll+rT7 +rlg+r 2 4 +r 2 7 (3.1 Id)

84 = r4+rll+r12+rts+r20+r25-r2g (3.11e)

sS  rS+r 1 2 +r 1 3 +r1g+r 21 +r 26 +r2 ,  (3.1 lf)I = rB+r 13 +r 1 4 +r20+r 22 +r 27 +r 3o (3.11 g)

87 = rT7+r 14 +rl 5+r 2 1+r 2 3+r2+r 31  (3.11h)

Thus, we have computed the syndrome of r which is equal to r.HT. But, r = (v+e)

so that 9 = (v+e)H r = v.HT+eHT. However, v-HT - 0 so that the following relation-

ship is established: a = e.HT. Because of the above relation it is possible to compute e

from s. The reader is referred to Chapter 3 of Lin and Costello [Lin83' for the proof.

The error vector, e, is computed from the matrix in Appendix A. Appendix A also shows

the 32 ej equations. Each ej is a combination of the 8 syndrome digits so that

j 81"82"S3"S4"85"86"87

where syns, represents the boolean AND function and si may be boolean I or 0. For

example, the syndrome decoding of es- 80-81-82.384 S'687 where si represents

boolean 1 and -i represents boolean 0. From Eq. 3.8 it follows that v e+r. Therefore,

the approximation of the original codeword is obtained by EXCLUSIVE-ORing the word

read out of memory, r, and the computed error vector, e.

3.3. PFA Controller

The PFA controller chip consists two main architectural parts, the micropro- (

grammed control unit and the processor unit. The microprogrammed control unit is

responsible for sequencing through predetermined states for the controller and initiating

processor actions as well as data flow through the chip. The processor unit performs all

the data manipulations as well as storing the data and sending signals to the

24



microprogrammed control unit. In order to make the architectural description more

meaningful, it is necessary to discuss the algorithms associated with the PFA controller.

In an application specific processor, the algorithm drives the architecture.

c.3.1. Host Algorithm. The host must operatc and communicate with the

PFA controller. Handshaking is kept to a minimum, optimally only an operate signal to .,

the PFA controller and a done signal from the controller. The host algorithm is shown in

Fig. 3. Initially, the host must reset the controller. This initializes the storage areas and

resets all counters and addresses lines. Now, the host lowers the operate signal and then

lowers the reset signal. The host can proceed to inspect any storage locations and update

if needed. Specifically, the host must specify the initial configuration, scale factors, size,

and timeout information. Once the proper data has been set, the operate signal to the "-

PFA controller is raised. Since the pipeline is set with data entering from one side and

exiting from the other, there may be two different hosts, an input host and an output

host. The input host must load the new data into the first memory and send a done sig-

nal to the PFA controller when all the data is loaded. The output host, at this time,

must unload the DFT results from the last memory in the pipeline. From the register

inspection, the output host knows whether the pipeline output data is valid or not, If the

data is not valid, the host ignores the current output data The next event is for the 11
current DFT to be computed. this is signaled by the done signal from the PFA con-

troller. The host may then continue to operate the PFA as long as needed.

At any time during the pipeline operation while the PFA is not computing, the host

may change the configuration, change the size of the DFT to be computed, implying a

hardware reconfiguration, or change the scale factors of the input data.
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PFA DONE?

Figure 3 Host Microcode Flow Chart

26



3.3.2. PFA Controller Algorithm. The high level algorithm for the PFA con-

."'"troller is shown in Fig. 4. The first section deals with initializing values and data on the

chip during power up. The controller then waits for an operate signal from the host.

While the PFA controller is waiting for the operate signal, the host has access to the

internal data stored on the chip. Once the controller has received the operate signal, it

C Initialize
3

PFA O PE R A TE 1 9 n?

yes

.%J

-lo

" WFT CODE

Figure 4 Controller Microcode Flow Chart
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checks to see if the pipeline must be reconfigured. Reconfiguration is discussed later in

this chapter. The PFA controller then toggles the flip signal sent to the memories. The

controller then communicates with the WFT processors Once the WFT computations
p

are done, the PFA sends a done signal to the host. a

The WFT interface algorithm is shown in Fig 5 The PFA controller must first

send the scale factors to the WFT, then send the operate signal, and then float the scale

factor lines so that the output scale factors may be returned by the \VFT processors The

controller then waits for four done signals. one from the input host and one from each

stage of WFT processors Once all have finished, the PFA controller latches the new scale

factors from each stage and stores them internally The controller then lowers the WFT

operate signal The controller looks at information received from the pipeline to deter-

mine if any errors have occurred and updates certain storage locations if need be If an

error has occurred in the active WFT processor. the controller set,, up a nev

configuration

3.3.3. Microprogrammed Control Unit. The microprogrammed ontril unit

(NCL) controls the operation of the chip It generates the contri signals that o)pprate

the pipeline, communicate with the host. or manipulate the internal data This. unit can

be thought of as two separate sections the control menir% and the rn Ir,!r,,rarim, e]

sequencer ManS2 The control memory is a read only memrn (RO) Wh,.re,.

read one at a time, represent a microinstruction Each microinstructin c-,,ntains infrma-

tion needed for the chip to operate The instruction format is brken d,,n into 1,,caloa

fields. Each of these fields defines a certain set of operations in the (hip Thee fielud can

be horizontally or vertically coded Man82 To achieve a compromise of the henefits. and 'I
tradeoffs of the two approaches. the PFA microinstruction contains b,,th
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The microprogrammed sequencer determines the next address to be read out of the

ROM. The next address can come from several sources including the microinstruction

itself, an external bus, a stack used for subroutines, or simply be the next address in

sequence. The microprogrammed sequencer determines the address from a number of con-

ditions selected by the microcode instruction.

Figure 6 shows a typical MCU. The control memory contains several main fields.

Two of these fields determine how the next address is selected, the condition and the

branch fields. The condition field selects one of the conditions used f-r branching and

control that exist in the chip. The branch field selects either T or F for an unconditional

branch or call, or positive or negative sense of the selected condition. The branch

IIu

- Input 4: 1 Mux Stack ,.
Logi ,.....

- '5T n 321:1 Mux !2 Lemeter

es •
t t

S s Control Memory

SBeectr Eranch $ icro Adrs Field

Select Operations I

Figure 6 Microprogrammed Control Unit
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address may come from three different places, the instruction itself, the stack, or an

external source. The stack is used as a temporary storage location in the event of subrou-

tine call for the return address. When a call is executed, the address of the next instruc-

tion is pushed onto the top of the stack. On a return, the branch address is popped off

the stack and selected as the next address. The MCU also contains an incrementer for

sequential addressing. "

3.3.4. Proseueir Unit. The processor unit contains the internal storage for

the chip and the circuitry necessary to manipulate the data. The PFA controller architec-

ture is organized around a bus structure and is shown in Fig. 7. The data is stored in a

set of registers that can be loaded or read. The registers are loaded through the C bus or

from an XROM field. The particular register is selected via a decoder. The data may be

read out on either the A bus or the B bus. The A bus and the B bus are fed into the

06 arithmetic logic unit (ALU). The ALU can perform 15 functions on the data and set con-

dition bits accordingly. For a detailed description of the ALU, the reader is referred to

the thesis of Capt. David Gallagher [Gals7].

3.3.5. Registers. The registers store the data for the controller. There are 28

registers in the controller. Seven of the registers have special purposes requiring such

options as being loaded from sources other than the load bus, driving the contents to

destinations other than the data busses, and shifting. The following defines the registers

used in the PFA controller and any special requirements:

ECC1-ECC3, Error Control Corrected registers.

These three registers are used as counters for the number of Error Control Code
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S'' : .. " -.--- :.: .' ' ' %,-.-., -: " " ,-, ' ' ' ',. , ' . " %;% - ". " " ", ,,. " % ,"- .e% ' ' "



ii p
p.

%-'.-¢v,.C b us selt'ct
"';q" A bus select

A Bus B Bus B bus select

sA 
iem eRe 

g iste r n 
ose

C seetB sele-ct

R egister n-1 bA selectu d o f l m

E C select B selectEr t crt e e

A select!

eRegisteser 3 Eo C r d
C select B select l b f u i

A select I i.

PegisterPari r Register 2C select B select i

Thes thee rgisersar ise ascutr1o h ubr fPrt rossgae

y e c 
A rith m etc L ogic U nt

Cal "OC u (ALU) ,

(from XROMl,

Figure 7 Processor Unit

corrected from the first three memories. These registers can be used for fault moni-

toring.

ECU1-ECU3, Error Control Uncorrected registers.""

F,.m

These three registers are used as counters for the Error Control C'ode uncorrected .:

from the first three memories. These registers can also be used for fault monitoring.

PE1-PE3, Parity Error registers.

€ These three registers are used as counters for the number of Parity Errors signaled

" by each stage of the pipeline.
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W\Dll- WD13,WD21- WD23,\WD31- WD33, Watch Dog registers

These nine registers are used as counters for the numb<r of times the WFT proces-

sor was assigned as having a fault.

TSR, Temporary Scale Register.

This register is used to store the scale factors to be given to each stage of the pipe-

line. Nine of the bits (3 sets of 3) must be able to be sent to the WFT processors

The register must also be able to receive the scale factors from the WFT processors

and then shift those by 5 bit for the next stage of the pipeline.

PSR. Permanent Scale Register.

This register is used to store the accumulating scale factors for each of the three

.

problems in the pipeline. This register must be able to transfer the problem's scale

factors to the respective problem's Problem Status register. This register must also

be able to shift the scale factor bit by 5 positions

PSI-PS3. Problem Status register.

These three registers store information about each of the three problems in the

pipeline TheN' store the current accumulated scale factor, and whether there was a

fault due to an active error, a memory uncorrectable error, or a parity error and

,nich stage of the pipeline the error occurred. The register also contains a bit signi-

fying whether the data was validated by the procesor finishing

(CR. Current Configuration Register and NCR, Next Configuration Register.

These two registers store the current and next configurations respectively.

TOUT, Timeout Register.

This register contains a time out value to determine whether a pipeline catastrophic

pipeline failure has occurred, such as a processor not finishing.
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TENIP, Temporary register.

This register is used as a scratch pad for many of the data manipulations,

3.8.6. Microcode Word Format. Now that all of the major architectural

components have been identified, the fields in the word format can be identified Figure 8

shows the architecture of the PFA controller, Each field in the microcode will control the

operation of an architectural block, peripheral circuit, or direct output. The first field

controls the addresses sequencer for the XROM. It determines where the next address or-

ginates The second field specifies the operation of the ALU. The third field is used to

indicate an insertion of the literal field onto the destination register bus. This is used to

load a constant from the microword into a register. The fourth, fifth, and sixth fields

select the two source registers and the destination register, respectively, for the ALL'. The

seventh field is horizontally coded and specifies certain control signals for the chip. The

eighth field signals the WFT processors to operate. The ninth field signals the host that

the DFT is done. Finally, the tenth field contains the address of the branch or a constant

to be inserted onto the destination bus. The bit fields will be described in Chapter 4.

3.3.7. Pipeline Fault Tolerance. The pipeline is set up for fault tolerance

using triple redundancy and voting for the VWFT processors [Hed861. In each stage, one of

the three processors is considered to be active, the other two are considered to be in

watchdog mode. When a processor operates in watchdog mode, it receives the same data

as the active processor, computes the same transform and compares its results with the

results of the active at the output pads without driving the pipeline data bus. If there is
-a

a discrepancy, a WatchDog error bit is signaled to the PFA controller. The PFA con-

troller looks at the three WatchDog error bits from each of the processors in each stage
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~. and uses a voting strategy to assign the error, if any one of the WatchDog error bit is

raised. The voting strategy is as follows:

Table 1: Voting Strategy

Active WatUchdol Watchdog2 Result

0 0 0 No Error Assigned

0 0 1 Error Assigned to Watchdog2
0 1 0 Error Assigned to Watchdogl
0 1 1 Error Assigned to Active

1 0 0 Error Assigned to Active

1 0 1 Error Assigned to Watchdogl
1 1 0 Error Assigned to Watchdog2
1 1 1 No Error Assigned

The (1,X,X) cases are conditions that are treated as normal because the possibility of the

active signaling a watchdog error is too small to warrant the amount of microcode and

hardware necessary for handling this condition. The conditions to cause a (I,X,X) case

would be for the active processor to signal that it had a watchdog error. This can only

happen when the WFT has suffered a major error, the pipeline has some kind of bus

error in which the line is set high, or a transient fault. If the active processor signals a

watchdog error and the others do not, this error will be assigned to the active as it

should be. The problem arises when the the active signals as watchdog error and one

watchdog also signals an error. In this case, the error will be assigned to the watchdog

processor that did not signal the error. It is difficult to determine what was the true

cause of the error was. The error could be in the active or either watchdog processor and

this voting strategy will not find the fault. In the event that all three signal a watchdog

error, no error is assigned. The probability of this occurring is extremely small except in

a high radiation zone. And, should it occur, the data would probably be corrupted

enough so that the next WFT in the pipeline would most likely detect a parity error. If it
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" .-". is the last stage in the pipeline the data will be bad with no error reported.

When the PFA controller executes the code for error recording, it looks at the

watchdog errors and determines if one of the three active processors has errored, if so it

sets up the Next Configuration Register to make the next active processor to be the

current watchdog with the smallest error count. If the two watchdogs have the same

number of errors, it selects the processor with the lowest number name (ie. VDil <

\VDi2 < WNDi3; where 1 represents the column). The names assigned to the processors

are shown in Fig. 9.

1121 31

23 T33

413

Figure 9 Processor Names
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.-.:.CHAPTER 4

Computer Aided Design Environment Tools

4.1. Overview

The computer aided design (CAD) environment has a great impact on the quality

and timeliness of what can be produced. A well-integrated set of tools from the design

stage through the implementation stage to the simulation stage allows easier transitions

between stages and quicker execution. AFIT currently supports a limited number of

tools for the design and implementation phases. In the following sections, the methodol-

ogy" for designing a VLSI chip within the AFIT CAD environment is discussed, descrip-

tions of the tools needed are given, and a description and the development of a CAD tool

O..$  created as a result of this thesis effort.

.4.2. Design Methodology

The first step in producing a VLSI chip to decide what problem to solve. A detailed

problem specification limits the scope of what is to be done and thus limits the amount

dof extra design that might not be needed. The next step is to develop an architectural

description from the problem specification. For the design parts of this thesis effort the

architectural descriptions are extremely different. The memory chip architecture supports

a data flow architecture and the PFA controller chip supports a finite state machine

architecture. Once the architecture has been described, the logic and circuit design follow.

At this stge, the nee eien macrocells are defined as well as the incorpora-

tion of testibliity. The next step is the ipSI layout. Once the layout is complete, the
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,""simulation phase begins. Simulation and verification start at the lowest level of design

and proceed up the hierarchy. When discrepancies are noted between the simulation and

the descriptions, the chip design loops back to various levels depending on where the

discrepancy occurred. Once the chip has met the simulation requirements, it is ready for

fabrication

4.2.1. AFIT CAD Tools. AFIT currently supports the CAD environment

near the lower design levels. These tools currently support VLSI layout and switch-level

simulation In addition to the software tools, AFIT has considerable computing power

and other hardware support for CAD. The hardware used in this thesis effort included:

1. Two ELXSI 6400s,2-CPU(12MIP,6MIP) running UNIX 4.2BSD
3. SUN2 and SUN3 Workstations running UNIX 4.3BSD
4. Two VAX 11,785s running UNIX 4.3BSD
5. A VAX 11!785 running VMS 4.5
6. A Versatec Plotter, and an assortment of printers.

The current mainstay of the AFIT VLSI CAD toolset is Magic [Ost861 . Magic is an

interactive VLSI layout tool that allows creation and modification of VLSI circuits using

Manhattan circuit design geometries. For this thesis effort, Magic was run primarily on a

SUN 3 because of the window environment and interactive speed for cell editing. Magic

was run on the ELXSI 6400 when executing several features of Magic that are computa-

tionally intensive This included the design rule checking of a silicon compiled XROM

(described later) and hierarchal cell "flattening" of the same XROM. The XROM contains

thousands of cells and was found to be easier, and faster, to work with the XROM7

"flattened."

Mextra [Fit83 was used to translate from the Cal-Tech Intermediate Form (CIF)

to a switch-level format suitable for other simulations. Mextra takes the "cif" file, which

39 *,

'A



is a mask level description of the circuit produced by Magic, and makes a "sim" file

which is a listing of all the transistors in the circuit and associated capacitances. In addi-

tion to the translation, Mextra outputs several other flies. These include the alias file,

the log file, and the nodes file. The alias file is very useful in finding nodes that are

"shorted" together that should not be. The log file gives information about the number of

occurrences of labels that are not connected together by stating that a certain label has

X number of occurrences. The file provides information that usually lead to finding

unwanted "open circuits" between nodes. Finally, the nodes file is a list of the node

numbers assigned by Mextra and their location on the chip. This is useful reference when

running other tools which refer to node numbers.

Cstat, a CMOS version of stat [TerS6 , was run on the output of Mextra. Cstat

provides information about nodes that cannot be affected by the inputs, cannot affect the

outputs, and nodes that cannot be set to either logic-i or logic-0. This tool is useful for

finding nodes that are not connected or shorted to either Vdd(logic-1) or GND(logic-0).

By the time the circuit is ready for fabrication, every node, if any, signaled by Cstat

should be accounted for.

Nofeed and Fixrom are two tools needed to allow Esim, described below, to work

properly. Nofeed scans the Mextra output to identify and remove the feedback loops

from Master-Slave Fiip-Flops (MSFFs) making them dynamic. A more complete discus-

sion of the operation of the MSFF will be given in Chapter 5. Fixrom modifies two por-

tions of the XROM for Esim compatibility. The first modification is to replace the shared

drain in the XROM storage array and the second is to replace an inverter in the XROM

sense amplifier. A thorough discussion of the operation of the XROM will be given in

Chapter 5.
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Esim [Ter86j, is an event-driven switch simulator for nMOS or CMOS transistor

circuits. Esim is used to exercise the switch level description from FIXRONI. This tool

was used to verify the logic created from the Magic layout for correct operation. Simula-

tion can be preformed as if the chip is under test by stimulating only the inputs and

observing only the outputs, or as a diagnostic tool by stimulating any node in the circuit

and observing any node in the circuit. Once a circuit performs as expected under Esim. it

is considered ready for fabrication.

Two tools developed at AFIT were used to create the XROM used in the control

section. The first tool was the Generic Microcode Assembler Tool (GMAT). GMAT was

developed as part of this thesis effort and is described in the following section. The

second tool was an optimizing XROM silicon compiler. This tool, given a list of integer

values describing the binary contents of the ROM, will minimize the transistor count and

the number of drains. The compiler will also generate the Magic layout for the optimized

ROM including the word selectors, column drivers, sense amplifiers, precharge circuitry,

and cell arrays

4.2.2. Generic Microcode Assembler Tool (GMAT). When designing micro-

code, it is desirable to describe the code in a structured language representation using

mnemonics. Describing microcode in these terms is helpful for two reasons: first, the

% code is more readable and second, the code is less prone to errors These factors

-b motivate the need for a microcode assembler. The CAD environment needs tools that can

be applied to different projects so the assembler must be generic.

To achieve the above needs, a generic microcode assembler tool Was developed This

tool takes a microcode word format description and mnemonic translation file and builds

a microcode assembler for that particular microcode format The resulting assembler
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5 reads in the translation file and the microcode to produce outputs that are compatible

with other CAD tools and are useful in debugging the integration of the microcode into

chip designs. Specifically, it generates an address stream used by the optimizing XROM

compiler, a VHDL description of the ROM, a reference file, and a reverse assembly file

The assembler supports several important programming features including labels.

literals, and default fields. By supporting the use of labels, jump fields may be specified

by a label rather than an absolute address that must be put into the microcode by hand

Supporting literals is useful when loading a location with a specified value from the

microinstruction. Supporting default values greatly improves code readability The

microinstruction need only specify those fields where some action is to take place

The assembler also supports several other features that are useful in the design pro-

cess. The assembler can output a file that can be fed into the XROM compiler This elim-

. inates a step previously needed and subject to human error The assembler also outputs

a reference file that shows the instruction and its translation. This is particularly helpful

in debugging the XROM connections in the chip

I

4.2.3. GMAT Amembler. The assembler created by GM.%T is essentiall a

two-pa.ss ass embler as described by Beck 'BecS5 On the first pa.s unsed part,. are

stripped and branch labels are stored for access on the second pass A, the a.seneri r"

scans the input file on the first pass. it %rites out an internediat, "stripped hl,'" and :i

listing file containing the input file and ass,ciated line numbeor-

On the seco'nd pas., the translat iri is ac, ,,irupl shed F irt the as..mtlVr rat- t he .

translation file ini,, internal data %tru ntures The tranr,,Itin hie ,reatd ,. th user

defines the mirr ,.r't frrat the field, and the aie- theN reI.r... t Th" A..s-eritler"
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now reads the "stripped" microprogram and uses the translation tables for the symbol

substitution. When the assembler parses a line, it starts with the first symbol encoun-

tered and searches through the list of names in the first field table. If the symbol is

encountered, it makes the translation and outputs the result to a data file then gets the '4

next symbol If a symbol is not found, the assembler puts in the default value for the

field and gets the next symbol This way the writer need not specify all fields in the

rnicrcode This enhances readability and decreases the chances of leaving a field out if

they all must be declared

A label is treated like any other field When the label is encountered in the word,

the a-ssembler puts in the value of the line number at which the label appeared in the

tir-t pva.s It also translates the line number to a 1 0 representation with the same

nurnber ,of hits a.s the field where it is being placed This allows the microcode to use

labtels for the branch fields instead of having to figure out the absolute location of the

hranch arid maniuallh insert it into the microcode word The assembler also allws inser-

in f literal, int,) the translatin When a pound sign is encountered, the field allowing

litrr ill be filled with exactly %hat follows the pound sign This allows constants to

h,, iie in th, rtnr,,,',,de If the aswsiembler does not find a symbol after parsing the entire

hil. t%%,',d t n- ma ha e occurred First the symbol could have been a "nop". or

ri th, s rih,, is an err,,r The "no " represents a "no operation" instruction The

.L ...l r h, k- fr a ' at this pint If the sv)mbl v not a "nop then it reports

Ih- ja, k , the ur a., an error and indicates the smbIol that wa, not found

After th, - i lt , h, asI u-IeHhr ha created a data ile that hI t- the transla-

t r,,n f lr the entir,, till r .d. ' Th, setrnhler n,,, create, a reference file f,,r the user

.
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This file lists the original instruction and following it, the translation by fields. This

reference file is extremely useful in debugging the microcode and the chip once the ROM

is in place.

The remaining features of the assembler are invoked as a command line switch

when running the assembler. The user may generate a reverse compile, an XROM address

file, or a VHDL description of the ROM. The reverse compile takes the file of translated

symbols and reverse assembles it. If the code is correct, the reverse compile will produce

the original microcode with labels removed and line numbers inserted. The assembler

may also generate the XROM addresses. In this section, the assembler transforms the

translated file into a form compatible with the XROM optimizing compiler. The assem-
S

bier separates the word into four parts and computes the integer value of the resulting

binary number. These four integers are then put into the XROM addresses file. The

assembler does this for all words in the microcode. The final option currently supported

is a VIIDL description of the ROM. The assembler generates a VHDL package that holds

the ROM and defines how the XROM is interfaced. The interface allows words to be read

from the ROM The ROM is represented as an array of bit strings. I

4.2.3.1. Translation File The translation file contains the microcode word

format and the field definitions, as well as their translation. The following is a represen-

tation section of the translation file used for the PFA controller:

BRSE. ALX LOADFD REG REG REG SPECFUNCT WFTOP PFADONE NXTADDR #

BRSEL 000000000
RET 000000001
CALL 000000010
iMP 000000011

CALLCR 000010110
JnPE3 111111111
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-. ALU 0000
AND 0010
XOR 0011

OR 0100

LOADFD 0
LOAD 1

REG 00000
ECCCI 00001
ECCC2 00010

The first line, it must be the first line, contains the microword format ended with a

semi-colon. The end-of-line delimiter is used in case a format description is longer that

one line. Fields in the microword format must appear below in the translation file. If a

'# follows a field in the format description, this field might contain a literal. If a ':' fol-

lows a field, this field might contain a label. In the above example, the NXT_.ADDR field

contains both. For the PFA controller this field is the jump field as well as the literal

field.

The field definitions that follow the format description are separated by one blank

line and end with the last field. The first line of a field definition consists of the field

name followed by its default value. Blank spaces are used to separate the values, not

tabs. The remaining lines in a field definition specify the sub fields and their translation.

In the above example, the REG field default value is 0000 and the value of register

ECCCI is 0001. When the assembler encounters the symbol ECCC1, it will place 0001 in "*

the translated file.
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* .5-, 4.2.4. PREG Operation. PREG is the interface to the user's microcode.

PREG reads the microword format and scans the translation file to build those sections

of code for the assembler that are user specific. The code segments generated are then

written to files that are added into the assembler when it is compiled.

PREG first scans the translation file for the microword format and which fields may

contain labels or literals. It then scans the translation file and records the names of the

fields and the lengths of the bit translation fields. The bit lengths are needed when mak-

ing the code that generates the reference file where the translated microinstruction fields

are separated by a space for readability. The length of the label field is also needed so

the translation from the line number to the binary representation of the proper bit

length can be done.

After having scanned the translation file, PREG builds the user-specific code. The

0 first file created, assem.h, is a header file containing definitions needed to implement the

code. These definitions include the word length in bits, the label field length in bits,

structures for the fields found in the translation file, and defines integers to record the

number of subfields for each field definition. Because the assembler dynamically assigns

these value when it reads the translation file, the number of subfields for each field may

change without needing to rerun PREG.

The next file created by PREG is the assem.tailored file. This contains the routines

to read the translations file, translate the microcode, make the reference file, and preform

the reverse assembly. The routine to read the translation file reads the fields in the order

found when PREG scanned the translation file. The routine to translate the microcode

uses the microword format and the names included in the translation file The reference

file routine uses the bit lengths to separate the fields when the reference file is created
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V.V

S."The reverse assembly routine parses the translated file into fields and then translates the

fields backwards into mnemonics, except for the jump field which is replaced with a line

number.

To make a tailored assembler, the user runs gmat a shell script that runs PREG

and compiles the resultant assembler. Appendix B shows the gmat shell script. Appendix

C shows the code for PREG. Appendix D shows the two files created when GMALT was

run for the PFA controller. Appendix E shows the code for the assembler skeleton.

translation file for the PFA controller is shown in Appendix F.
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CHAPTER 5

VLSI Design

h~.%

5.1. Design Techniques

Before describing the the VLSI implementation, it is necessary to explain several

different VLSI design techniques used. These are 2-phase clocking, design with transmis-

sion gates (t-gates), and master-slave flip-flops (MSFFs).

Two-phase clocking employs the use of two non-overlapping clocks to synchronize

operations on the chip. Wes851. A timing diagram is shown in Fig. 10. The two clocks,

PQI and PQ1, each have separate operations. The inputs to all logic units that are syn-

chronized with the clocks become valid on the rising edge of PQ1, falling edge of

precharge if precharging is used, starting all computations. The outputs are latched on

the falling edge of PQ2. ending all computations. Two-phase clocking is useful for syn-

chronization in the circuit. It also prevents some signals from racing through flip-flops

destroying the intended sequencing. .

PQ 1

PQ2 J
PRECHARGE

Useful Computation Time

Figure 10 2-Phase Clocking Timing Diagram
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The second design style is the use of transmission-gates (t-gates). T-gates are the

CMOS switch, the equivalent to pass transistor in nMOS logic. A t-gate is shown in

Fig. 11(a). The transmission gate is made up of a p-transistor and an n-transistor in

parallel. Both types of transistors are because a p-transistor will not pass a strong logic-

0, that is, it passes no lower then approximately 1.7v, and a n-transistor will not pass a

strong logic-i, that is, it passes no higher than approximately 3.3v. By using both, a

good switch with both a strong logic-1 and logic-0 is designed. The control for the t-gate

is supplied to the n-transistor and its complement is supplied to the p-transistor so that

both transistors are on when control is high on the n-transistor and its complement is

/

low on the p-transistor. When using the t-gate symbol, only the signal to the n-transistor

is shown in Fig. 11(b). The complemented input to the p-transistor is still needed, but

not shown.

_- :- A MSFF is shown in Fig. 12. The MSFF is the basic storage unit. The input is "

latched on the falling edge of PQ2 and remains in the first feedback loop until the rising

edge of PQ1, at which time it moves into the storage area on the right where it is latched

I Control

IIn Out In Out

Control

AW

(a) Transmission Gate (b) Transmission Gate Symbol

Figure 11 Transmission gate
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PQ2 PQI

.

.'°

Figure 12 MSFF Description

on the falling edge of PQI. The feedback loops keep the value of the nodes as long as

* power is supplied to the circuit or until a new value is loaded. When PQI rises, the value

is output to the circuitry using the stored signal.

5.2. Memory Chip

.. jef The memory chip includes the storage cells for the bits, the encoding circuitry for

the error correcting, the decoding circuitry for the error correcting, as well as other cir-

cuits for bitline control, word selection, bitline detection, and one-shot generation. Fig-

ure 13 shows the chip architecture including all the major components.

5.2.1. Memory Cell. The memory cell is based on a one transistor cell design

shown in Fig 14(a). The one-transistor design was chosen to increase the density of the

memory. The cifplot of the memory cell is shown in Fig. 14(b). Each memory cell actu-

ally holds two bits, one associated with the wordline above and the other with the word-

line below. This was done for several reasons including modularity, density, and capaci-

tance reduction. Modularity is obtained by designing the cell to be arrayed in any direc-

tion. The density is obtained because the cell is so tightly packed. The final reason, and
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Birfine

Wordline

Storage Node

_1_

Figure 14 One-Transistor Memory Cell Logic and Cifplot

the most important, is the reduction of the bitline capacitance. The sources of all the

memory storage cell transistors are attached to the bitline. If transistor source sharing

was not used, there would n sources on the bitline where n is the number of words in the

array. In this implementation, there are only - sources. The reason for keeping the

2

capacitance of the bitline as small as possible is related to reading a memory value.

Reading is based on charge sharing between the bitline and the storage node. The word-

lines run horizontally across the cell in polysilicon and second metal. The polysilicon and

the second metal are shunted together at both sides of the array to decrease the effective
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resistance of the polysilicon thereby decreasing the acces.- time. The bitlines run vertically

in first metal. The actual memory storage area is n diffusion area connected to the drain

of the pass transistor on the bitline. A grounded polysilicon plate sits above the area of

n-diffusion. The charge for the cell is stored on the capacitor created between the polysili-

con and the n-diffusion. When the wordline is raised, the precharged bitline will either

maintain its value because the charge stored on the capacitor was high and no charge

sharing takes place, or experience a decrease in charge because the value on the polvsili-

con plate was low and charge sharing between the bitline and the cell takes place. The

decrease in charge will be less than 0.02 volts because the capacitance on the bitline is so .

much greater then the capacitance of the memory cell.

5.2.2. Bitline Control. The bitline is pulled up and down for reading and

writing. Figure 15 shows the circuitry for the bitline control. The bitline is precharged

before every read and before writing a logic-i, and pulled down before and during writ-

ing a logic-0. The three signals that determine the state of the bitline are

precharge + WRenabl. b.t

KWordline ._."

Bitline

Storage Node

W~enab--g-_I

Figure 15 Bitline Control Circuitry
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Write-enable(Left from PEA), precharge (PQ1 from WET), and bit (data to be written

from XWTT). These three signals control the biline..precharge (active low) and

bitline..pulldou'n. The above is summarized below:

W~enble recarge bitTable 2: Bitline Control Logic cr mn

0 0 X 0 0 pread efr

*0 1 x 1 0 read

1 0 0 1 1 pull dn before write 0

1 0 1 0 0 _precharge before write 1

I 1 0 1 1 pull dn during write 0

1 1 j 10 write 1

5.2.3. Sense Amplifiers. The sense amplifier design is shown In Fig. 16 The

senlse amplifier 1-s used to detect a slight drop in the bitline voltage if the memory cell

stored a logic-0. The sense amplifier is based on a differential voltage amplifier. A dummy

vultage reference i- used for the comparison. The dummy bitline is connected to a

BitlineDummy Bitline

GND

Figure 16 Sense A-mplifier
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column of memory cells that always have a stored value of 2.5 volts from a voltage

divider. Vref is used to maintain a constant current in the amplifier. When a logic-i is

read and the bitline voltage does not change, it will be higher than the dummy bitline.

This will cause its transistor to be fully on, causing the above node's voltage to drop.

The p-transistor above the dummy is turned on, pulling the output toward logic-1.

When the bitlme is lower than the dummy, more current will be drawn through the

dummy transistor pulling the output to logic-0.

5.2.4. Word Selection. The word selector is based on a NOR of the address

bits. The design is shown in Fig. 17. The NOR approach was chosen over the NAND

approach because the resistance of the consecutive gates in the NAND design increase the

time needed for the output to change. The inputs are selected for the NOR as either

address or address in such a way as to prevent pulldown when the word is selected The

NOR had previously been pulled up by precharge-shol and the address select lines are

gated with precharge-shot to prevent inadvertent pulldown of a NOR output while it is

being pulled up If the NOR output is logic-i %hen precharge transitions to [ogi-! the

value of the NOR pa.".-e' through the NANI) gate This output L inserted - herrne th,

pl c eprecharge

. ...
precharge,,hot L_

An/An A2 A2 Al Al AO Ar

1 ig r#, 17 '% r * * . . ...

%i
," I
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Figure 19 Syndrome Bit Generator

Th, compu:tation of the error vector bits may be done two different ways, the eight

Ir- ,,. bits could be fed into a Programmed Logic Array (PLA) or each error vector

hil ,. l he c(mputed using custom logic The PLA method is not the most efficient

b,.aus. eatch error vector bit is the sum of only one product This would leave a great

deal f4 rf.; nt being util;zed Custom logic is thus the implementation choice To

in,-r: h' t eas r of design. a basic cell is used and then personalized with smaller cells to

slt, t the desire( logic configuration The logic for the error bit generator is similar to

the address decoder except that no gating is done with precharge. Finally, the error vec-

tor bits are fed into a 2-input XOR gate to produce the final output as shown in Fig 20.

The other inputs are the bits read out of the memory The ECC i; designed to produce

error control for all 12 bits (24 data, S parity) but the 8 parity bits are not used outside
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P

error vector bit

memorybi

* output bit

Figure 20 Out Bit Generator

of the chip, so there is no need to correct them. This reduces the number of XOR gates

to 24.

6.2.6.3. ECCC and ECCU. The Error Correcting Code Corrected signal sent

to the PFA is determined based on the syndrome bits If the number of syndrome bits at

logic-i is one or two, then a single error was found and can be corrected Thus the

ECCC signal can be implemented using a PLA with 24 product terms of 8 bits each

The Error Correcting Code Uncorrected signal sent to the PFA is also based on the svn-

drome bits If the number of error vectors bit at logic-I is greater than two. then a dou-

•e ble error was detected and may be corrected The correction cannot be guaranteed, hon-

ever Thus the ECCU signal could be implemented using a PLA with 2 - 21 104 pro-

duct terms of eight bits each A PLA with 104 product terms is prohibitivelY large for

any application The solution for these signals can be implemented using an-Alg circuri

techniques very easily The circuit is shown in Fig 21 When one or two of the error vec-

tor bits is high, the input to the inverters will drop no lower than 2 3 volts This will

trigger the top inverter, designed to switch at 2.5 volts When more than two of the error

vector bits is raised, the inputs to the inverters will drop below 2 volts The bottom

inverter is designed to trigger below at 2 volts. The logic is summarized as follows

59%
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Syndrome H iL%

Figuire 21 F('(*' ECUI Cirruitr

Table 4 E('('( and F'XX1 Ieterminati. i

A H H esulIt

0 0 lno errors

0 1_ not pmil

6.2.7. Switching Circuitry. 'The nwitching ciru jitirv is used 1- ccn r I hi

fi,, rf the data i., the ryenii' r. arra.N, The dlata 6''... is shwni tin Fig 22 The A,,rd

sclect ime'. mulst riefromn tA( different sources, one souirce for reading and the other

for writing The input datta is channeled into the memory side being % ritten and the out-

pit dli s ext racted front the side of the memorY being read front The signali to accom-

plvih all of the n'efssary multiplexing i-4 the lWritce nable signal generated by the PFA

controller as LEFT
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6.3. PFA Chip

The PFA controller has three major sections, the control section. the data section.

and the peripher These are shown in Fig 23 I

6.8.1. Control Side. The control side of the PFA controller is responsible for

grierating the control signals used to operate the PFA controller and the pipelinp It a
d---this h-% %eqrien ing through a set of m icroinst ruct ions stored in a read only memory

T~he address of the instruction to be executed s generated by the control sequencer based

(on Narious control signals from the current instruction and certain state variables gen-

er:ir ed h.% the en viron inient The control sect ion was; describ~ed in Chapter 3 and shown

aguri iniFig 4 The major sections include the control memory, the net~t address genera-

r t h, nid it vii select I he stack, and the incrementer

ALU Register Array Hs

AL Interface C

Sc ti n Ce rCi rc u itry

Sequence

h:-
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5.3.2. XROM. The control memory is implemented using a read-only N

memory (ROM) developed at AFIT. This ROM, the AFIT X-ROM was designed by Paul

Roesbach in 1985 Ros85' and its general structure is shown ini Fig. 24. The vertical

pitch of the memory cells is such that decoders are needed on both sides of the ROM to

access all of the words. The wordlines run horizontally in polysilicon and second metal.

The horizontal pitch of a memory cell is so small compared to the sense amplifier that

some column decoding is needed. The sense amplifier is four times the horizontal pitch to
N.

run a single bitline. Therefore, two of the address lines are fed into the sense amplifiers S

to select one of four bitlines Additionally, the LSB of the address lines is fed into the

column drivers at the bottom to select which bit is "AO"

p

5.3.2.1. XROM Memory Cell. The AFIT XROM memory cell is shown in

Fig 2,5 The name XROM is derived from the 'X shape of the transistors around a com-

mon drain Ros85 Before a read. each of the bitlines is precharged to logic-I through an •

n-transistor resulting in a voltage around 33 volts When a wordline is selected the --

*-. -

Al
A2 .i., A 3i- - n

A l-3_ Sense Amplifiers and Multiplexors_"_ _

D S S D
e I

C XROM g XROM XROM g XROM C

d Arra\ B Array Array B Arra) d
e e
r r

AO Column Drivers _KA I]
PR E '-'.

Figur,' 21 ,FIT XtH(I? ' Structure
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V.""- Bitline

Wordline i

. Wordline i+ I

PRE + AO PRE + AO

Figure 25 XROM Memory Cell

transistors connecting the bitline with the A0 or A0 address line turn on allowing the

bitline to discharge through whichever of the two is tied to logic-0. When the bitline is

to discharged to logic-0 this indicates the presence of a transistor and thus, a stored value

of logic-1. If no transistor is present, the bitline will not discharge and the sense amplifier

recognizes this as a stored logic-0. If both AO and AO are connected to the bitline,

"fighting" will occur and the bitline voltage will settle to 1.5 volts. Since the sense

amplifier is set to trigger above the n-transistor at 4 volts, it will correctly recognize this

as a logic-0.

5.3.3. XROM Sense Amplifier. rhe sense amplifier is used to detect the

value on the bitline and amplify it to a full 5 volts or 0 volts. The implementation is

shown in Fig. 26. Initially, the bitline is precharged through the p-transistor at the top of

the cell. The two address lines which select one of the four bitlines are already stable.

Thus at the end of precharge, the bitline below the selected n-transistor is at 3.3 volts. If

a transistor is present at the word selected, the bitline will discharge to approximately 0
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'., Bitlines

Figure 26 XROM Sense Amplifier

volts, this causes the gate connected above the bitlines to turn the p-transistor on, rais-

ing the output to logic-i. The two transistors before the two inverters are designed so

that they become an inverter triggered a 4 volts. The n-transistor gate is not connected

to the p-transistor as in regular inverters to minimize the capacitance on the sense line.

- . When no transistor is present, the bitline does not discharge, the n-transistor pulls the

output of the pseudo-inverter down, and a logic-0 is output. If two transistors were on

the bitline, it will settle at 2.5 volts below the n-transistor. This will drop the sense line

enough to turn the p-transistor on the pseudo-inverter output a logic-I as expected.

5.3.4. XROM Pipeline Register. The XROM pipeline register sits above the

XROM sense amplifiers and was developed by Capt. David Gallagher [GaI87. Using a

pipeline increases the utilization of the XROM. When a pipeline is used, the last word

out of the XROM is being executed while the next word is being fetched. By overlapping

the execution and fetch operations, the effective speed of the controller is doubled.

Without a pipeline, it would take one complete clock cycle to fetch the word and another

to execute, then the next word would be fetched in one clock cycle and executed in

another and so on With a pipeline, however, the clock cycle needed for fetching is
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hidden by the execution of the last word fetched.

The pipeline works by using a modified MSFF to store the instruction from the

XROM output and isolate it while the XROM fetches the next word. Additionally, the

pipeline may be logically separated from the XROM for testing purposes. In this mode, s.
S.

the pipeline becomes a shift register controllable from several chip pads.

5.3.5. Control Sequencer. The control sequencer, designed by Larry French

[Fre86' and modified by David Gallagher [Gal87. determines the addressing for the *"

XRONI. It consists of five main blocks, address selection, condition select, branch select.

incrementer, and stack.

5.3.5.1. Address Selection. The address select block selects the next address

for the XROM from four sources. The first is the next address field of the current

instruction. Allowing the next address to come from an instruction enables the microcode

T -to branch. The second source is the top of the stack. Using a stack allows the use of

subroutines in the microcode. The stack will store the address of the instruction follow-

ing the call so that program control can return to that point. The third source is the

incrementer allowing sequential addressing. The fourth source is an external source This

external source is used to manually control the sequencer for testing of the controller In

a more general processor, this source can be used to map functions from a register

5.3.5.2. Condition Select. The condition select block is used to select one of

thirty-two possible conditions. These conditions are used to determine conditional

branches, calls, and returns. The original 32:1 mux routing was slightly modified for this

thesis effort to allow access to all 32 condition inputs French gives a detailed discussion

on the construction of the 321 mux in his thesis Fre86 The condition selected depends
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on the value of the 5 conditional mux select (CMS) lines generated from the XROM. The

conditional input, along with the values needed to select it appear below.

Table 5- Condition Selects

Condition Mux Condition Mux

Select (MS Conditi-n Select CMS Condition

0 1 2 3 4 0 1 2 3 4

0 0 0 0 0 nct defined 0 0 0 0 1 not defined

0 0 0 1 0 ERR(R 0 0 0 1 1 Negative Flag

0 0 1 0 0 Zero Flag 0 0 1 0 1 PEA Operate

0 0 1 1 0 41) -.r 0 0 1 1 1 Watch Dog Err:,r

0 1 0 0 0 \P E.-r C 1 0 1 0 0 1 "D Err C-! 2

0 1 oi1 0 \AP Fr-7 0 I 1~ WD. Err 11I

I I 1 0 0 "Ti Frr 1. 0 1 1 0 1 WD Err 13

0 1 1 0 \WTI F, " 0 I I,1.WI Err 22

1 0 0 0 0 WAI [' 2 l 0 I : ,I -

. i I 1 0 1 "1 .V 1, I -1 n kll r:

T I

I II " M '. I, I I " ,"

I iI 1 ,-- ' " t ' I '
r r i ii i ' i ! i \4} ii mii r w

b.3.b.3. Inerrm entcr. i nt r,..'n r ,r 'tf i l l irit.'d l ,;,A, 'ii l :i full

t i .r:,t h. l.t '.,-rr',:" . ii:., i1 t1- . p.+r i: j~ th" -d: r t,- di.' pr '' I' *u :ii,1res,.

hr-'ugh a " t ., i h t - l lS can
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Sum = A zor B zor Cin and

.7 Cout = A (A rnor B) + Cin (A zor B)

to

Sum = A zor Cin and

9 Cout = A and Cin.

Additionally, since Cin to the LSB is always 1, the equations for this bit simplify to

Sum = A and Cout = A. Thus, all bits but the LSB can be implemented with half-

adders as shown in Fig. 27. The LSB can be implemented simply using a single inverter

5.3.5. Subroutine Stack. The stack is used to store the return address for a

call. On a cell, the address of the next instruction is pushed on the top of the stack On

a return, the top of the stack is poped, and this becomes the address of the next instrur-

tion For the PFA controller microcode, there will only be one call active at a time mean-

ing that the stack only needs to store one address. Figure 28 shows the stack for m-r,'

than one stage to illustrate the stack operation. When Push is activated, the input is fed

intc the first M.SFF and the values of the following MSFFs are fed into the next \1'F-

Th, 2-ph+.e clocking keeps the values from overwriting each other until the prpr till

When the Pop is activated, the output comes from the top of the stack and all mth,-

Cin

oSum

) 7.
%%

Cout

Figure 27 Incrementer Half-Adder
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values are fed IIt i i f -

5.3.6.1. Branch SelecLto ..

the next addref- 41 gav -ri , rj - t, I jf , ,

sense is determisined b r _ b rh,, a 4f

branch-on =1 the cornplersest t' , '. ! . .. . b

mined based on the next addre--v tseiori, N f iv. it,

Table 6 Next Ad'rv. 1 # , N, '

NAFO NAFI NAFL' -Fu,, r-'

0 0 0 (ontn,.- N 1 ' .. NA 1

0 0 1 Return NA Y ,V I l

0 1 0 Cal! N A N " A"

0 1 1 Branh %A - %xi A,,

1 0 0 (ond Lxternai Loai NA - Er i i, A, A i

1 0 1 Cond Rpturn NA - St w k l' :

I 1 0 Cond (rn- NA - Nxt Allir F ' ',' '1 f

I I I Cond Fru- A-N~I'-.

• NA=Next Address

The conditional functions are executed when the selected condition is actiated fr(,rl the
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condition mux field described earlier.

6.3.7. Data Side. The data side if the PFA controller includes the registers,

the arithmetic logic unit, and any special configurations for data handling including spe-

Jai rf-giter interface,, and data data path insertion.

b.3.7.1. Register Cells. The data in the PFA controller is stored mainly in

r t,-ier- 'Yhi- gi e- a uniform method of access and increases modularity and regularity

:. 1t ,, 'he basi( register cell is shown in Fig. 29(a). The cell is based on the

\.-]I de-, rded earlier The input is loaded into the first part of the cell when Load is

t.,g! ai.,i ihe ri-,ig edge of PQ2 occurs The data is latched on the falling edge of PQ2.

, i, -,g- -f PQI the data is loaded into the main part of the cell. When the

- e driei, ,i the A or B bus, the signal lets the value pass through the t-gate

t ,L- "'he three inverters from the PQ1 t-gate to the bus are staged to

* . Kua.,J1 urreitt dru e to the bus line Two other register cells are needed by

1 ii , ,, I.,-r "le htrfirst allows the cell to be driven from external sources other

'L, - .u'~ 1. '.e *d all,,. the cell to drive its value to a destination other than

I t It. Xlerijali 1,,adahle cell is shown if Fig 29(b) In the cell, the load t-gate is

A t lle 1111u1 is drien in %hen the other load signal is raised. The driveable

S -i, v I-* I 2Y i lI" tlji- (ell thf, value is tapped off right before the t-gate

-,,, 1 . t-gi/ t,, f,,l', ed Lx ali inverter In all. four cells are needed to implement

a.. it rvg-i/.-r, a Gasi, (eli a loadable cell a driveable cell, and a loadable and driveable

,t11 Ilhe ,oadahle and drixeal - cell is just the extra cell circuitry for both options added

t, a single cell
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Figure 29 Register Cells

" 71'-
_a,



.'

.- ,. The A and B busses are precharged for two reasons. First the time to pullup the

line can- be incorporated into areas of the clocking where no useful computation is taking
J.

place (i.e., register selection), and second a decrease in the register cell size. The standard

inverter contains a p device for pulling up to logic-1 and an n device for pulling down to

logic-0. In using a precharged bus, if the inverter output is a logic-1 no action is taken,

however if the output is a logic-0, then the bus line is pulled to logic-0. Therefore by

using precharged buses, the p-device pullup is not needed. This significantly reduces the

area needed for the register cell. This size directly impacts the register arrays. If a cell is

decreased by one lambda in the vertical direction, this equates to decrease of 28 lambda

for the entire array, one lamba per register. The removal of the p-device reduced the size

of the register cell by approximately 12 lambda in the vertical direction.

5.3.7.2. Registers. This section describes all the registers and how the data is

mapped in them. The previous section described the three types of registers cells that are -

used. Each register is an array of the type of cell needed according to the register's func-

tion as described in chapter 3, Section 3.2.5. The register cell is an array of 16 basic

register cells. This cell is used to implement the error count registers (WD, EC, EU, and

PE), the TOUT register (Timeout), and the TEMP register. The sregister cell is an array

of 16 loadable/driveable register cells used to implement the TSR and PSR registers. The

dregister is a register using 16 of the driveable register cells and is used to implement the
.

CCR register. Finally, the ELR is made up of 16 loadable register cells. The interfaces

with the registers is described in the following section.

4''

The least complicated registers are the error count registers. These registers, includ-

ing the 9 watchdog counters (WD11-WD33), the 3 parity error counters (PEI-PE3), the 3

error corrected counters (ECI-EC3), and the 3 error uncorrectable counters (EUI-EU3),
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store a 16-bit count indicating how many errors have occurred for the event the register

counts. The WD registers are used not only for fault monitoring, but to determine which
[" ..

WD will become the next active processor should that become necessary.

The CCR and the NCR store the current configuration and the next configuration

respectively. Each of the nine MSBs are associated with a VVFT processor and indicate,

by a logic-1, if the processor is active. Accordingly, a logic-0 indicates that the processor

is in watchdog mode. The bit to processor translation is shown in Table 7. "

Table 7: Bit to Processor Translation

Procasor WDII WD12 WDI WD2 M WD31 WD2I WD33I not defined -

Bit 16 14 13 12 11 10 1 9 8 1 7 ] 60 6 4 3 2 1 0-'we

The ELR, Error Location Register, indicates where errors, if any, have occurred dur-

ing the DFT computation just completed. The first nine bits are similar to those for the

CCR and NCR, but the following six bits are associated with parity errors and memory

uncorrected errors. There is one bit position for each of the three columns for
d'.

Parity Error and ECCU. The translation is shown in Table 8.

Table 8: ELR Translation

WD WD WD WD WD WD WD WD WD PE PE PE EU EU EU .
11 12 13 21 22 23 31 32 33 1 2 3 1 2 3

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The TSR and the PSR store the temporary and permanent scale factors, respec- del

tively. The TSR is used to store the scale factors to be driven to the WFTT processors

and the receive the output scale factors from the processors after computation. Once the

scale factors are received after a computation, their values are added to the PSR for scale
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accumulation. The TSR is then shifted so that the scale factors can be passed to the next

stage. Each problem uses five bits to store the accumulated scale factor Five bit are at

worst case when all the scale factors are 7 (i.e., 111 + 111 -I-t ±111 11100). Once "

the contents of the TSR are added to the PSR, it too is shifted so that the least ".

significant set of five store the total scaling of the next DFT to complete. The bit transla-

tion is shown Table 9.

Table 9: TSR and PSR Translation

Scale Factors (MSB-LSB) nd
Register Problem I Problem 2 Problem 3

TSR 0 0 s2 s1 so 0 0 2 1 90 0 0 s2 sI so -%

PSR s4 s3 s2 sl 9 s4 sl 90 s4 s3 s2 sl sO

Bit 15 14 13 12 11 10 j8 7 6 15 4 3 2 1 0

The Problem Status registers (PSI, PS2, PS3) are used to store information about

each of the three problems in the pipeline. The five MSBs store the accumulated scale

factor for the problem, the remaining bits are used for error identification. In this way,

the host can determine, in the event of a failure, which problem is bad and where the

error occurred. The LSB indicates whether the problem finished. This identifies which

processor column did not finish in the invent a timeout failure occurs. The information

in the PSi registers duplicates the information stored in other registers, but consolidates

it by problems for faster identification by the host. The bit translation is shown in Table

10.

Table 10: PSi Translation

Rea Scale Factors Active Error nd Pauity Error Memor Error Done

PSi 4 &.3 s2 sl s0 CI C2 -C3 C1 C2 C3 MI M2 M3 Dn

Bit 15 14 13 12 II 10 g 8 7 8 5 4 3 2 1 0 %
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.+- 6.3.7.3. Special Register Interfacem. S,-re reKLIer% need 'e i t ,

interfaces to perform either a shift a 45(d fr, n ex t.rr al -u r,e - 1 - ri t X I r I ef

tinations, or a ('()lbinatioln 4Jf the thre, Th pe i l i r it lrii t.1 :t. i it i rli rilf t

Table I I

labl' I I spe, ml Regil'ier H4,pqrrmlt-

TSH Iirtr ______ ' rJrjc H jr'cii

TLoad ()r i 't ate 'sca li it,

PSH 5.-bit 5p~siton shiftable

)rive set, of !i-hits t P'I. I"N2. 13

ELH Ld 9 NIS14% froni Error 3,n.mIti11iI

PSI Load 5 IMSis fron PS

l.oa lIA fr,,i Dine Input P'at,

('CR t)rie P %lSiK t) Satire Scale 1u-

Fach of the interfaces is shown in Fig 30 The shift is implemented a.% fls th,"

I.. shift signal (/iftf'SR for the PSR and for the TSHI allows the tlpCl ,alu, t(

pa'is through the t-gate and directly into the load by-pass in the desti at i,i cell I',,r the

load, a t-gate is put before the load by-pass The signal on the input line is fed directly

into the cell when the t-gate is turned on (LdScale for TSR, LdELR for FlR, Ld.S'calc for

PSi) For the drive, a t.-gate is attached to the tap point before the drive inverters of the

register cell The t-gate, when on, allows the tapped value to pas through and onto a

staged inverter to drive the line. The t-gate prevents unnecessary capacitance when the

cell is not driving a line. For the TSR, another t-gate must be placed before the connec-

tion to the state/scale bus. This prevents the previous scale values from driving the bus

while the state values are being driven to the state/scale bus from the CCR. The

state/scale bus and its interfaces are discussed in a later section. For the CCR, this is not

needed because of the extra circuitry needed to select the state information.
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1a) PSR

15 141 13 12 1)11 10 9 8 71 6 5 4 3 2 1 0

Ice (c) PSLR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 10

(d) PS1,PS2,PS3

LdSw~e

1 113 1 11 1098787 6 54 32 10F

(e) CCR

Figure 30 Special Register Interfaces
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The Pxtra rircuitr% is needed for the (C(R when it drives the state information onto

the state scale bus This circuilr) selects which of the configuration bit is driven Since it

v% jp-imie to lo)ad the state 0f three WFI pro('esors at once. one in each column. the cir-

ru itr selects % hich t hree hits t, drive Th is circuit rY is show n in Fig 31 The LRi

1 2 3) select- % hich 4f the r(,ws to- drive and the LdState allows the information to

,r#-the state scale bu-. only w hen loading the state thus, preventing fighting with the

%~5l iri. rri~ttI' i

6.3.7.4. Regiater Selection. The register selection cell determines whether the

register Ls selected to drive the A bus, drive the B bus, or be loaded from the C bus. The

cell has the sane vertical space as a register cell This allows the register selects to array

right along side the registers Inside the cell are the three selection circuits. The selection

circuit iS based on ANDing combinations of the five selection bits and then ANDing this

0. result with prerharge. A gate-level description is shown in Fig. 32.

State/Scale Bus

551 0 SS2O0 SS3O0

LdState 4

It 12 13 21 22 23 31 32 31

Processor Number

Figure 31 Extra Circuitry for Selecting Configuration Bitsle
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A4
A3

* A2

AO Rgse

PRE

Figure 32 Gate-Level Description of a Register Select

The inputs for each select (A bus drive, B bus drive, C bus load) are fed into a full.

CMOS NAND gate. The NAND was chosen over the NOR to make the transition de'la%

more equal in both directions for the least amount of area. If a NOR was used, the delay

for a 0-1 transition would be slower than the delay for a 1-0 transition because of the

mobility due to p-diffusion since the '1' must pass through 5 p-transistors This could be

offset by increasing the length of the gates on the p-diffusion, but this would greatly

increase the area. Instead, the NAND is used where the delay for a '1' is through only

one p-transistor. The difference between the two types of implementation is shown in

Fig. 33. The output of the NAND gate is inverted to form the AND and this is gated to

a NAND along with precharge followed by an inverter. The purpose of these two gates.

making an AND, is to prevent the selection circuit from activating the selection lines

during precharge. If either of the drive lines were to be activated during precharge, the A

or B bus might not be properly precharged. If the load line was activated during

precharge, the precharged lines would be loaded into the register destroying all previous

data. The output of the inverted NAND is then staged-up to drive all the selection lines

for the register cells.

The VLSI implementation of the cell allows them to be stacked vertically for modu-

larity in the design. The selection bits, along with their complements, run vertically
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Vdd Vdd

NOR

GND GND

(a) NOR GATE (b) NAND GATE

Figure 33 NAND) and NOR XTSI Gates

through the array of register selects. To personalize a register select, the select signal or

.11

-,its complement is fed into the NAIND gate through the use of a select bit cell. This style

- of implementation allows easy change from one personalization to another so that only

the configuration of the select bit cells is different for each register select. To select regis-

'S,"

ter 00111, for example, the personalization would be (seLO,seL0,seL1,sel.1 sell) where

selO0 selects signal for the n-diffusion 'and' and sign~al for the p-diffusion 'or', and sel

selects signal for the n-diffusion 'and' and the signal for the p-diffusion 'or'. A cifplot of a

register select cell is shown in Fig. 34 that shows the personalization for 00111.

5.3.8. Data Path Insertion. The XROM must be able to insert a literal onto

the C bus. This allows constants to be loaded from the XROM microinstruction to the

a register. This is accomplished by using an array of t-gates controlled by LdCbus which -

drives the XROM field onto the C bus.
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Figure 34 Register Select Cell with 00111 Personalization

5.-. Arlhmetic/Loglk Unit. The Arithmetic Logic u'nit ALL'I compute,

the data manipulations for the controller and was designed by Capt Dave Gallagher

iGal871. It uses four functional units and one passive unit for each stage The functional .

units include logic to implement addition, AND, OR and XQR, the passive unit corn- 5

putes a MOV by passing the data through unchanged. The A bus feeds directly into all

five units. The B bus, however, is fed into a selection unit that selects either B. B.0. or I 99

depending on the function desired. A 5:1 multiplexer selects which unit is output to the

C bus. Figure 35 shows the implementations of the tbree logic functions. Additionally,

the ALU will compute four flags: overflow, zero, negative, and carryout. The PFA con-

troller uses only the zero and the negative flags.

5.3.9.1. Integer Adder. The integer adder works with two's complement-

arithmetic based on the carry-select method [Wes85]. With the carry-select method, the

sum and carry out is computed for both a carry-in of zero and a carry-in of one. When
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S, .. . . . , , r . . hr u~h 4 adder elik and 4' addi-

"10. , '-, I , , -- 'h- ,! r Th.,IM t Z, ingr then four aiu CeIL, for

A, 1i ' 1 1 Fh Ai ,,r equjAtIInI. art,
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Figure 36 Carry Select Adder Blocking
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Carry = (A rnor B).4 + (A4 ror B)C

' This implementation for the carry allows the use of the A zor B signal generated for the

sum to be used reducing the amount of circuitry per cell. The implementation is shown

in Fig 37.

5.s.g.2. Functions. The functions computed by the ALU as well as the sig-

iils needed to generate are described as follows:

,°O
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.'P_ Table 12: ALU Control and Functions
.Control S * %_s

Control Signals Function Operation Implementation Carry In Flags
a3 a2 al aO

0 0 0 0 nop

0 0 0 1 INV C -A xor I Z

0 0 I 0 AND AandB C -A and B Z

0 0 1 1 XOR A xor B C- A xor B Z

0 1 0 0 OR A or B C A or B Z

0 1 0 1 MOVE A C -A

0 1 1 0 Set Carry Cin = I Cin - 1 Cn -I Cout

0 1 1 1 Reset Carry Cin = 0 Cin 0 Cin -0 Cout

1 0 0 0 INC A+ + C*-A + 1 I all

1 0 1 1 DEC A- I C*-A+ I 0 all

1 0 1 0 ADC A+B+ Cin C-A+B+Cin Cin all

1 0 1 1 ADD A + B C A + B 0 all

I- 1 0 0 Not Defined --

I 1 0 1 SUB A-B C-A+ +l 1 all

I 1 0 SUBB A- B - Bin C A + 9 + U Ci'n all

1 I I CMP A-B C-A + 9+ I I all

5.3.10. Host Control Interface. This section describes the host interface with

the PFA controller during the WAITGO loop. The WAITGO loop in the microcode is

used so the host can examine the PFA registers and change, if necessary. For the host to

examine any register it must be able to select a register to drive onto the data bus. For

loading, it must be able to put the input data onto the data bus and select the register

to load. The signal HOSTCONTROL determines whether the inputs to the register

selects come from the XROM or from the host and the signal LOADSTUFF determines

the data flow direction. This allows the same set of host register selection signals for both

reading and writing. It also allows the data pads to be used for reading and loading of

data. Thus, the number of pads is 21 (16 data, 5 register selection) instead of 42. Figure

38 shows how the determination is made for the register selection. The host register
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HOSTCNRO _ Select Pads

R S LOADSTUFF LOADSTUFF elc

$ HOSTCONTROL + LOADSTUFF R

s' e• B Select o

et MiHOTCONT ROL + LOADSTUFFM
s /C Select

Figure 38 Source Determination for Register Selection 6

selection source for the A bus will be the XROM for HOSTCONTROL+LOADSTUFF

and the source for the C bus selection will be the XROM for

HOSTCOA'TROL+LOADSTI.,TF otherwise, it will be the host. This ensures that when

the host is in control, but not using one the register selects, the inputs will be set to all

.. zeros from the XROM preventing nondeterministic results from floating lines. Figure 39

shows the source and destination determination for the data busses. For the data bus,

data will flow from the pads to the C bus for HOSTCONTROL'LOADSTUFF and from

A Bus C Bus

HOSTCONTROL " "HOSTCONTROL

LOADSTUFF _ LOADSTUFF
~MSFF LOADED

AND DRIVEN WITH
HOSTCONTROL

: LOADSTUFF .. LOADSTUFF

Pads

Figure 39 Source and Destination Determination for Data Busses
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the A bus to the pads for HOSTCONTROL.LOADSTUFF. Using the LOADSTUFF sig-

nal prevents the A bus and the C bus from being shorted together. The signals and their

effects are summarized in the following:

Table 13: Register Selection and Bus Determination

A bus A bus C Cbus C busHOSTCONTROL LOADSTUFF

select destination select source
0 0 XROM internal XROM internal
0 1 HOST in tern al XROM internal

1 0 XROM PADS XROM internal

1 1 XROM internal HOST PADS

5.3.11. Periphery. The peripheral circuitry contains that which does not fit

into either of the two previous major sections. This circuitry includes the interfaces to

the NTTs, the state/scale bus, the voting circuitry, the load circuitry, the scale factor

handling, the DFT size handling, the 4 Done signal generation, the ERROR signal gen-

eration and associted signals, and the toggle flip-flop.

5.3.11.1. State/Scale Bus. The state/scale bus is used to transmit data to

the VTTs about state and scale information as well as receive the new scale information.

The state/scale bus consists of nine lines with a group of three representing the

state/scale bus for a particular WFT pipeline column. The data flow for the bus is

shown on Fig. 40. The three main signals that control the data flow are LdState,

LdScale, and DriveScale. The scale information flows into or out of the TSR. DriveScale

controls the t-gates above the TSR register that allow the register to drive the signals,

and LdScale controls the t-gates above the register to load in values by-passing the C

bus. The state information is generated from two places; the size information comes from

the size storage cells and the WFT processor watchdog configuration information comes
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Its wdns I

SZ1 SZO SZO/SC2 SZO/SC2 SZO/SC2

• Col I Col 2 Col 3

State/Scale Bus

Figure 40 Data Flow for State/Scale Bus

from the CCR. A logic-] tells the WFT to be active, and a logic-0 tells It to be a watch-

dog. Since the columns have independent state/scale busses, they can be loaded con-

currently. The LR 1, LR 2, and LR 3 signals from the XROM select which bit from the

CCR to drive onto the state/scale bus. These signals are further gated by LdState so as

not to interfere with loading or receiving of the scale information. The translation of the
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state/scale bus to the WFT interface for each column is as follows:

Table 14: PFA-WFT Interface Translation

PFA ST I ST2 ST3
WFT WD/SCO SIZE/SCI SIZE2/SC2,I I%

5.3.11.2. Voting Circuitry. The voting cell is used to assign an error to one

of three inputs according to the voting strategy described in chapter 3. The voting cell

has several components. The first component is the cell called 3vote. This cell actually

implements the voting strategy. From Karnaugh maps with inputs i,j,k, the following

logic equation result for each of the three input to determine error assignment:

error i = ijk + i'j'k,

error, = 0-k + i.-.k,

errork = Jk + i'j-k.

One particular implementation is shown in Fig. 41(a). The problem with this implemen-

tation is uneven capacitive loading. The capacitance loading on the c input is 1.5 times

that of b and much larger than a. Also the a signal must travel through two t-gates,

whereas b ar - do not. To reduce this imbalance, thus increasing speed, the solution

shown in Fig. 41(b) was chosen. This distributes the load while still maintaining the

mutual exclusion needed for the multiplexers. It does, however, increase the number of t-

gates needed because of the need to prohibit floating nodes. The cell is repeated three

times, one for each set of three WFT processors. The next component in the voting cell is

the column error generator. This cell looks at all of the nine error lines output by the V,

3vote cells and determines which columns, if any, contain errors. The column generator

unit is made up of three 3-input OR gates. The OR gates are made by a 3-input NOR

gate followed by an inverter. The column error signals go to the branch circuitry. The
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the pipeline. When the LOAD line to a WFT processor is high the information is loaded s f-w

into flip-flops that store the information until the LOAD line becomes high again Each -

• -4. -

"TT processor must have its own LOAD signal since each must be configured
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individually. However, each of the three columns of WFT processors may be done at the

same time since each has its own 3-bit state/scale bus. Therefore, loading is done one

logical row at a time for the three rows. The implementation is shown if Fig. 42. Since

each row is loaded at a time only three lines are needed, one for each row.

5.3.11.4. Scale Factors. The initial scale factors for the WFT16 processors

must be given by the host. The host inputs these while LOADSTUFF is high. Therefore,

every time the host raises LOADSTUFF when changing the register values, it must also

ensure the correct scale factors. The storage for the scale factors are modified register

cells. They are modified because the lines that the cells drive are not precharged as in the

register array. The modification is to put in the p-device that was not needed in the basic

register cell. The input to the cells are gated with LOADSTUFF so that when LOAD-
,p'p

STUFF is high, the signals on the input scale pads are loaded into the storage cells. The

scale factors are loaded into the TSR when LdInit is raised. This occurs before the TSR

drives the scale factors onto the state/scale bus to be output to the WFT processor

columns.

LdRowl LdRow2 LdRow3

11,21,31 12,22,32 13,23,33
Processor Number Loads

Figure 42 WFT Processor Load Determination
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b. .. Table 15: WFT DFT Size Determination

SIZEO SIZE2 Size Translation

0 0 4096
0, 1 768

1 0 - 276

.. 1..Done?. The DONE signal generated by this cell is used as a condi-

tion input for branching until the input host and the three WF'Ts have completed their

operations. Each of the input DONE signals are fed into a NAND gate, the output of

this gate is inverted three times to produce the desired AND product and stage up the

signal to travel across the chip to the branch logic.

5.3.11.7. Error?. The ERROR? cell determines if an error occurred during a

DFT computation and also generates signals isolating the error to a set of input bits.

Figure 44 show the gate-level description of the circuit. The three sets of inputs come

Parit-

WatchDog Eanty Uncorrectable
Error Memory

Error

WDerr I I
WDerrI'
W'Derr13 3
WDerr2l %
WDe rr22 _____

WDerr2 3
WDer31 ==D
WDerr32
WDerr33 

"

PEI %I

PE2 
O

PE3

ECCUI
ECCU2
ECCU3

Figure 41 Gate-Level Description of ERROR' Cell
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from the Voting Circuitry, the Parity Error pads, and the Error Code Uncorrected pads.

"C'.i Any one of these bits being high invalidates the data where the error occurred. The logic

'goal' is to implement an OR of all the signals. At the same time, the area of the error

needs to be identified, therefore a simple 15-input OR gate cannot be used. Instead a

NOR gate is used for each set of inputs. The inverted NOR, making an OR, is used to

generate to error flags for each input set. The outputs of the NOR are fed into a NAND

gate to produce the ERROR flag. By using the boolean equations, the use of an OR gate

in CMOS would have produced two levels of gates since an OR gate is produced by

inverting the output of a NOR gate. The boolean transformation from the input to the

ERROR signal can be seen as follows:

each of the NORgates produces:

WDerr = WD 11 err+ WD 12err+ • + WD 32err+ WD 33err

PEerr = PElerr+PE2err+PE3err

EUerr = ECCU 1 err+ECCU2err+ECCU3err

the N4ND gate produces:

ERROR = WDerr.PEerr.EUerr

by deMorgan' s Law(-d-b = a +b)

so,

ERROR = WDerr+PEerr+EUerr = WDerr+PEerr+EUerr.

Thus producing the same logic output but using one less gate. The output ERROR is

used as a condition flag for calling the error routine and the three other outputs are used

to narrow down the error location to save time in the error routine.
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5.3.11.8. Toggle F/F. The toggle flip/flop is used to generate the FLIP for

the memories. The XROM simply indicates to the circuitry that the signal needs to be p

changed. This way, the microcode need not test what the value was before and then
€%.-

change flip it. The circuit needed to implement this must toggle its output every time the

input is pulsed from the XROM This kind of flip-flop is a toggle flip-flop (TF/F). The p
.3

TF/F chosen for implementation is describd in Glasser and Dobberpohl [Gla85'. This

circuit, shown in Fig. 45. operates with a 2-phase clock and a reset. The reset signal
I

comes from the global reset signal for the PFA controller. The reset signal is needed to

put the TF/F into a deterministic starting state, otherwise the feedback loops are
, 7',

undefined. The input is the FLIP bit from the XROM, this bit is raised for one clock 4

cycle before each DFT computation is started. The FLIP determines which side of the

memory is written to (read from).

5.3.11.9. Column Done Storing. If a timeout occurs, it will be necessary to

indicate which of the column failed. This is done by loading the DONE signal from the

three WFT columns into the PSi registers at the same time the output scale factors are

loaded into the TSR. This way, the PSi will contain information as to whether the

• RESET PQ2 OT' :

FLIP

Figure 45 Toggle Flip-Flop Gate-Level Representation
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5.3.11.5. Size. The DFT size bits are handled in an manner similar to the I"

initial scale factor bits. When LOADSTUFF is high, the input at the two SIZE pads are

loaded into two register cells. The DFT size bits are driven to the state scale bus when

the state is being loaded into each WFT processor with the LdState signal. Each VVFT a

processor, 15, 16 and 17 each receive the same DFT size. The size determines how many

words the WFT processor will use in the DFT computation. The interface to the

state/scale bus is shown in Fig. 43. The reason for gating each of the size bits through

LdState even though this same signal drives the output of the storage cells is so that the

state/scale lines will not be shorted when loading scale information. The following

describes. the meaning of the size bits for the VTT16:

°-.

o

PADS

LOADSTLFF

Initial

Scale
Storage

Sz /SC O
LdlnitSC

SZO/SC2

Col I

Figure 13 Size Interface to State/Scale Bus
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problem is still valid as well as which column did not finish. The 'ATT done's are directly

loaded into the PSi registers with the LdScale signal from the XROM.

5.3.12. Microcode Development.

The microcode is developed along side the VLSI design. Design tradeoffs are made p

between the microcode and the hardware. Routines in the microcode can be made simpler

by increasing the hardware complexity. Tradeoffs occur when the complexity of the

hardware increases more rapidly than the microcode simplification.

The first step in the microcode development defines the microinstruction fields. The

PFA microinstruction contains 10 fields as shown in Table 16.

Table 16: Microword Format

0- Q,12 18 14-18 10-23 24-2 2-41 42 43 44-6

The BRSEL (branch selection) determines the branching conditions and selections. The I

ALU field determines the operation of the ALU. The LOADFD (load field) field deter-

mines whether the NXTADDR field is inserted into the datapath or not. The ABUS

and BBUS fields determine which register is driven onto the A bus and the B bus respec- .-

tivelv. The CBUS field determines which register is loaded from the Cbus. The

SPECFUNCT (special functions) field is a horizontally encoded field to control certain -

operations on the chip. The WFTOP field is used to start the AXTT processors. The

PFADONE fields is used to signal the Host that a DFT computation has been completed.

The WFTOP and PFADONE fields were not included as part of the SPECJFUNCT field

to increase code readability and emphasize their importance. NXTADDR (next address)

is the final field in the word. This field is used to both specify the branch location or a

literal to be placed on the C bus.

94

o" '

L!

N .

%,



The BR...SEL field is connected to the control sequencer and broken down into three

subfields as shown in Table 17.

J.

Table 17: BR_.SEL Field .
BRSEL Field P%

CMS BRON NAF

0 1 23T4 5 67

The CMS (conditional mux selector) subfield, enumerated in earlier in Table 5, selects the

condition bit for a branch. The BRON field selects the condition bit when this field is a

1, and the complement when it is a 0. This way, the microcode can branch on the

presense or absence of the condition. The NAF (next address field) subfield selects the

source for the next address. The NAF field is enumerated in Table 6.

The ALU field consists of the four signals a3-aO that are connected to the ALU. The

ALU field is enumerated in Table 18 and shown below.

Table 18: ALU Field

ALU Field
a3 a2 a I a0
9 10 11 12

The LOAD.FD is bit 13 in the microinstruction. When this bit is a 1, the contents

of the NXTADDR field is driven onto the C bus. From the C bus, it can be loaded into

any register. Accordingly, when the bit is 0, the field does not affect the C bus.

The ABUS, BBUS, and CBUS select one of the 28 registers to be driven or loaded.

Five bits are needed to select the 28 registers. The format of these fields is shown in

Table 19.

95

D'
.A



Table 19: Bus Fields

ABUS BBUS CBUS

0 1 2 31 4 0 11 2 3 4 0 1 2 3 4

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

The select of a register is a combination of the 5 address bits Each fields uses the same

decoding scheme enumerated in Table 20.

Table 20: Register Select Translation

Select Select-T- Register Regster

4_3__2_ 4 3 12 1 0 _ _

00000 unused 10000 )31

00001 ECI 10001 WD3 .

00010 EC2 10010 ND33

00011 EC3 10011 TSR

00100 EUI 10100 PSR

00101 EU2 10101 unused

00110 EU3 10110 PSi

00111 PEI 10111 PS2 a.

01000 PE2 11000 PS3

01001 PE3 11001 ELR

01010 WDI1 11010 NCR

01011 WD12 11011 CCR

01100 WDI3 11100 TEMP

01101 WD21 11101 TOUT

01110 WD22 11110 u n used

01111 WD23 11111 unused

The SPECFUNCT (special functions) field is the seventh on the microinstruction

This field contains bits to control certain operations on the chip and in shown in

Table 21.

a96

o,

%:
%



%i Table 21: SPECJFUNCT Field

SPEC3FUNCT Field

Bit Control Signal

29 Flip
30 Ldlnit
31 LdScale
32 LdPSi
33 ShiftTSR
34 ShiftPSR
35 LdELR
36 HOSTCONTROL
37 LdR1
38 LdR2
39 LdR3

40 LdState
41 DriveScale

The VTTOP field is bit 42. When this bit is high the WFT processors are allowed

to compute. Bit 43 is the PFADONE field. This bit is raised when the PFA has corn-

pleted a DFT computation.

Bits 44-59 specify the NXT..ADDR (next address) field. Sixteen bits are needed

because this field interfaces with the 16-bit C bus. Bits 51-59 are connected to the source

multiplexer in the control sequencer and represents the branch address.

The microcode word format is summarized in Appendix G. The second step in

microcode development takes the algorithm flow charts developed in chapter 3 and

translates them into microcode routines. The first task according to Fig. 3-3 is initializa-

tion. This is done by loading all the registers with Os as shown below:

RESET: LOAD REG REG TEMP #0000000000000000;
LOAD REG REG WDI1 #0 000 00C3OO3(ZO3;
LOAD REG REG WD12 #0000000000000000;
LOAD REG REG WD13 #0000000000000000;
LOAD REG REG WD21 #0000000000J000;
LOAD REG REG WID22 #0000000000000000;

.4.. LOAD REG REG WD23 #OOO0030300003000;
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When consecutive microword fields use the same field from the translation file, the

defaults must be explicitly defined for the fields before the one being used. In this exam-

pie, the third register field was used but not the first two. Therefore, the defaults for the

first two must be set.

The next step is to wait for the Host to give the PFA the PFAOP signal. During

this time, the Host is allowed to examine and alter the register contents. The loop for

this is shown below.

WAITGO: JnOP HostCntl WAITGO; A

HostCntl;

This loop illustrates several important points about the microcode and the PFA con-

troller. First, the use of label is shown. WAITGO is the name of the loop and the line

number is substituted for WAITGO in the microinstruction. Second, the use of default

values makes the microcode more readable. If default values were not permitted the same

two lines would be coded as shown below.

WAITGO JnOP ALU LOADFD REG REG REG HostCntl WFTOP PFADONE WAITGO,
BRSEL ALU LOADFD REG REG REG HostCntl WFTOP PFADONE NXTADDR,

Third, the pipeline requires the instruction following a branch to cause no undesirable
J

side effects. Since the fetching of the XROM microinstruction is pipelined, there is a one

instruction delay before a branch occurs. In this instance, a nop is not needed because

HostCntl should be high until the branch occurs.

After PFAoperate is received the controller compares the CCR and the NCR. If

these are different, a new configuration was requested. The controller then moves the

contents of the NCR to the CCR and loads the configuration data via the state/scale bus

to the WFT processors. The controller then toggles the LEFT signal to the WFT proces-
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sors, drives the scale factors from the TSR to the TT processors via the state/scale

bus, and raises WFTOP.

The controller now waits for all four DONE signals from the input host and the
,

A- three WFT processors. The controller will only wait a predetermined time for the proces-

sors to finish. This time is stored in the TOUT register. While the controller waits, it

increments the TEMP register and compares it to the TOUT register. When the two
',"

register are equal, a time out has occurred. The host will detect this in the PSi registers

because the done bit will not be set. The code implementing this is shown below.

WAITDONE: INC TEMP REG TEMP WFTop;
CMP TEMP TOUT WFTop;
JZ WFTop SCALE;
WFTop;
Jn4DN WFTop WAITDONE;
WFTop;

When the controller exits the WAITDONE loop, it latches the scale factors from the

processors into the TSR, drops the WFTOP signal, and checks for errors. The reasons for

many of the condition inputs will now be explained.

To save time in the error routine, the controller isolates the error(s) to a specific set

of inputs. A sample of the error routine below illustrates this.

JnWD ErrPE;
OR TEMP PS3 PS3;

WDREGS: JnECol INCOL2;
nop;

WD-11: Jnll WD_12;
nop;
INC WDII REG WDI1;

_WDI2: Jnl2 WD_13;
flop;
INC WD12 REG WD12;

WD_13: Jnl3 INCOL2;
flop;
INC WD13 REG WDI3.

I-
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INCOL2: JnECo2 INCOL3;

ErrPE: JnPE ECCU;
nop;

The controller first checks if the error occurred in the watchdog processors. If the error

was not in the watchdogs then it skips to the segment for Parity Error. Within the seg-

ment for watchdog errors, the controller first narrows the error to a column and then to

a specific processor. This same approach is used for all the error signals.

The controller then determines if an active processor faulted by comparing the CCR %

and the ELR. If an active was at fault, the pipeline must be reconfigured. The controller %

looks at the watchdog error counts for the two current watchdogs and assigns the one

with the lowest error count to be the next active Once the controller has set up the new

configuration in the NCR, it will be different than the CCR and RECONFIGURE will be

called when the controller starts the next problem. The controller now sends the PF4-

DO.\E signal to the host and waits for PFAOP

5.3.13. PFA Controller Summary.

This chapter hws described the VLSI design for the memory and the \LSI design

and microccnA development for the PFA controller The PFA controller consists of

several major functional units and interfaces. The high level interaction of these units

can be better appreciated in Fig. 46. This figure shows the major parts of the contrnller

and their approximate location on the chip.

* . °
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CHAPTER 6

Results

6.1. Results

This thesis effort has produced a prototype memory chip, the layout for the full

memory chip and the PFA contoller, and a generic microcode assembler.

6.1.1. Memory Chips. A prototype memory chip was design and fabricated.

It was designed to test the address decoders, the memory cell, the sense amplifiers, and

the bitline logic. The chip was fabricated in 28-pin package using 3 micron CNMOS pro-

cess through MOSIS (MOS Implementation Service). A photomicrograph of the fabri-

cated chip is shown in Fig. 47. The chip contains 32 words with 10 bits each. One of the

bits in each word was used for the dummy bitline and one other bit was unused.

A larger memory chip was also designed and submitted for fabrication. This chip

was designed to store 272 words by 24 bits. This is the size memory needed for the a pro-

totype PFA pipeline using a VTT16 and a ATT17 processor. The larger chip also con- .

tains all the circuitry to support the error correction and detection. A cifplot of this chip

is shown in Fig.48. The chip is 7900 microns by 9200 microns

6.1.2. PFA Chip. A fully functional PFA controller was designed and sub-

mitted for fabrication. The chip will be 7900 microns by 9200 micron and sits in an 84-

pin package. The chip contains over 23900 transistors. A cifplot of the chip is shown in

Fig. 49. Prior to submission, the chip was fully simulated using Esim and the design was

verified.
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8.1.3. Generic Microcode Assembler Tool. A CAD tool was developed that

takes a microcode word format and a mnemonic translation file and builds a customized

microcode assembler. The assembler uses the translation file to generate a listing file, a

reference file, and a file of the translated microcode. Optionally, the assembler will pro-

duce an output of the microcode suitable for input to the optimizing XROM compiler, a

file reverse compiled form the translated microcode, or a VIIDL description of the

XROM.

GMAT was also used in two other thesis efforts and in a class taught af AFIT in

the Fall term. Capt. Dave Gallagher used GMAT for his microcode for application

specific processors [Gal87] and Capt. Larry Shand used GMAT on a microcode descrip-

tion on a Kalman filter chip to generate a VHDL description [Sha871.

Capt. Gallagh used a preliminary version of GMAT where much of the information

needed by GMAT was entered interactively. This process was tedious and very error

prone. After the initial assembler was created, GMAT was no longer used. Instead,

alterations to the assembler were manually inserted by the author.

Capt. Shand used the final version of GMAT for the Kalman filter application.

With this version, GMAT extracted all information from the translation file and no data

was entered interactively.

The students in the Introduction to Computer Architecture class used GMAT in the

completion of their group projects.
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CHAPTER 7

Conclusions and Recommendations

?

7.1. Conclusions

This thesis has shown that an application specific processor can be designed within a-

four months. With the state of the CAD tool set at the current time, it should be possi-

ble to design, submit, and receive application specific processors within one thesis cycle.

Efforts due to this thesis and the thesis by Capt. David Gallagher have increased the

CAD tool set such that this can be done. It is now possible to have an ALU that will be

useful in almost any processor, a control section that is correctly designed, an optimized

XROM, and a microcode assembler. Each of these improvements has special importance

and decreases the layout time. This thesis used the predesigned ALU, control sequencer, S

and XROM. However, the design of the ALU was still being done and the control

sequencer had never been completely debugged. The XROM functionality had already a.''

been proven. By using pre-designed cells, the designer of the processor, can spend more

time on other areas of design including testability, controlability, and observability. The

designer will also be able to spend more time simulating the circuits in both spice, for :.'.

timing analysis, and Esim, for functional analysis. All of this increases the probability

that the chip will function properly when fabricated.

The microcode assembler is a very useful tool in several areas. First, the microcode

can be written in a form that is easy to read and less prone to errors. Once this micro-

code has been written and debugged, it is no longer necessary for the writer to translate

the microcode into an integer format for the XROM optimizer. This greatly reduces the ,
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time needed to generate an XROM and the opportunity for human error. Secondly, the

reference file containing the microword along with its translations is a useful debugging

tool. One can observe the intended instruction, the XROM outputs, and the connections

to the XROM. This lets the designer verify all connections to the XROM and the XROM

itself. Thirdly, the 'VHDL output of the XROM will be useful when chip level verification

can be done using VHDL. The VHDL environment at the current time does not support

easy simulation of VLSI chips. However, when it does this tool will already support an

XRONI description.

7.2. Recommendations

Several areas in the Prime Factor Algorithm and in the CAD arena still need to be

addressed. In the PFA project, the fully functional memory chip and the PFA controller

must be tested. Additionally, the chips used for clocking need to be developed. These

chips need to be carefully designed to meet the requirements of the pipeline. The chips

should be very powerful and able to drive the large currents needed by the NNTTs and

capacitances associated with it. The NNTT15 and TT17 need to be designed. Although

they are just modifications of the WFT16, the time needed for layout and simulation will

take approximately one man year for both. The work involved in these design will be

intensive, but will not be suitable thesis material. The design and implementation of

these chips could be done by a staff engineer. Finally, the prototype PFA-WFT pipeline

will need to be implemented and tested. The prototype includes a WNTT16 followed by a

WNTTI5 in a two-stage pipeline.

In the CAD arena more areas still need to be developed for streamlined design of

application processors. The area most lacking in tools is simulation. Esim is the only tool

really used to verify chip design. This will simulate at a switch level but higher level

108

• ,' ' ,,..,. '+-' -' "+" +" +' -'.'. ', °o+'. ,fo '. '++.P +"+-+" , + €" ,d " + ,+" d
+

I' " . p ,+'. ". ,," p+" • +p e",."+ -"+ " p++ -" "* p "-%++'I."." - p



simulation is needed. Two areas of research are currently being developed at AFIT. These

are the STOVE (sim to VHDL extraction) project and the ongoing VHDL theses. The §1

STOVE project is attempting to extract chip at a gate-level representation. Currently, it

extracts inverters, clocked inverters, and t-gates. The PFA controller was extracted at

this level and produced approximately 12000 lines of VHDL.

The current state of the VHDL environment does not support chip level simulation.

When it does, however, this will become an important step is VLSI design. Chips will be

designed first at the VHDL level, the layout will be done, then the chip will be extracted p

back to a VHDL description and then compared to the original VHDL description. The

tool to complete the design loop will be able to take the original VHDL description and .--

compile it into silicon. This decreases design time and eliminates human error at the lay-

out design level.

.j This thesis effort, along with the thesis effort of Capt. David Gallagher [Ga187], has

shown that it is possible to generate a complete application specific processor within one

thesis cycle. This could be very important to the Air Force and the DoD, as well as

AFIT. The rapid development of VLSI chips will decrease the time need to insert VLSI I

technology into existing systems. All the design methodologies associated with applica-

tion specific processors can be applied to the design to VHSIC systems as well. The

AFIT VLSI environment could be developed so that high quality, fast turnaround appli- I

cation specific processors could be produced and tested within one year. To encourage

this development several areas could be explored. First, AFIT could be designated as an

Air Force "center of excellence." This would establish AFIT as an identified program and

allow more resources to be dedicated to VLSI design. Resources are the second area. A set

of hardware could be dedicated just for VLSI design. This should include at least one
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Sun Workstation and a superminicomputer such as an ELXSI 6400. Third, a civilian staff %

of at least two people could be dedicated to the VLSI design teams. One person would be 0

responsible for maintaining the CAD tools, systems, and general configuration manage-

ment. The second person could be a design engineer acquainted with the CAD tools and

the cell libraries able to integrate the design into silicon rapidly. With these recommenda- I,

tions, AFIT could be a leader in the field of VLSI/VHSIC insertion.
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APPENDIX A

Error Correcting Code Matricies

This appendix contains the matricies used for the Error Control Coding in the PVA:
controller chip

Table A-I: Parity Generator Matrix

80 81 82 83 84 86 86 87

Uo 1 1 0 0 0 0 0 0

U1  0 1 1 0 0 0 0 0

U2 0 0 1 1 0 0 0 0

u8  0 0 0 1 1 0 0 0

U4  0 0 0 0 1 1 0 0

U6  0 0 0 0 0 1 1 0

UI 0 0 0 0 0 0 1 1

u7  1 0 0 0 0 0 0 1

Us 1 0 1 0 0 0 0 0

u9  0 1 0 1 0 0 0 0

U 10 0 0 1 0 1 0 0 0

u11  0 0 0 1 0 1 0 0

u 12  0 0 0 0 1 0 1 0

u 1  0 0 0 0 0 1 0 1

u 14  1 0 0 0 0 0 1 0

u is 0 1 0 0 0 0 0 1

U16  1 0 0 1 0 0 0 0

U 17  0 1 0 0 1 0 0 0

u i 0 0 1 0 0 1 0 0

u 19  0 0 0 1 0 0 1 0

U2D 0 0 0 0 1 0 0 1

u21  1 0 0 0 0 1 0 0

u22  0 1 0 0 0 0 1 0

U 2 0 0 1 0 0 0 0 1

A-I
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Corresponding parity generator matrix equations:

% O U 0 +U7+U 8 +U 4 +U 6 +L 2 l t'4 =U 3 +U 4 +UIO+U4j2 +1 1 7 +U20

V1 UO+U1 +Ug+U 1 5 +U 1 7 +U22 t5  114 +U 5 +U 1 1 +U 1 3 +Ul +U. 1

V2 =U 1 +u 2 +U 8 +Ul 0 +Uj 8 +U2 3  t'6  U6 tU 6 +U 1 21U1 4 +U 1 g+U20

€A

4V3 tAU2 +U3+Ug+U 1 1 +UIB+Ulg V7U= 7U3+I+2+2

Table A-2: Syndrome Generator Matrix

I 80 8 2 as 84 86 So 8

r1 0 1 0 0 0 0 0 0--,.

r2 0 0 1 0 0 0 0 0

ro 0 0 0 1 0 0 0 0

r 0 0 0 0 1 0 0 0

r6 0 0 0 0 0 1 0 0

r 0 0 0 0 0 0 1 0

r7 0 0 0 0 0 0 0 1

r. 1 1 0 0 0 0 0 0

r7 0 1 1 0 0 0 0 0

r 0 0 1 1 0 0 0 0

r' 0 0 0 1 1 0 0 0

f12 0 0 0 0 1 1 0 0

rt 0 0 0 0 0 1 1 0

r 4 0 0 0 0 0 0 1 0

SrI 1 0 0 0 0 0 0 1

rna 1 0 0 0 0 0 0

r 17 0 1 0 1 0 0 0 0

r I 0 0 1 0 1 0 0 0

rjg 0 0 0 1 0 1 0 0

r2 0 0 0 0 1 0 1 0

r21 0 0 0 0 0 1 0 1

r22 1 0 0 0 0 0 1 0

r 2, 0 1 0 0 0 0 0 1

f24 1 0 0 1 0 0 0 0

r2 0 1 0 0 1 0 0 0

rM 0 0 1 0 0 1 0 0

rl7 0 0 0 1 0 0 I 0

r2 0 0 0 0 1 0 0 1

r7 1 0 0 0 0 I 0 0

r7o 0 1 0 0 0 0 1 0

rsI 0 0 1 0 0 0 0 1 1-

A-2
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Corresponding syndrome generator equations:
S.-. .so = ro+r 8 +r l5 + r +r 2 4 +r 2  4 = r 4 +rjl+r 12 +rj 8 +r +r 2 5 +r 2 .

81 rl+r 8 +rg+rlT7 +r 23 +r 25 +r 30  85 = rS+rl 2 +rl3+rlg+r 21+r2e+r.

82  r2 +rg+rlo+rj6+r,8+r26+r31  So = r6+rl3+rl4+r20+r22+r,,+rV

83 = r 3 +rio+rll+rl 7 +rlg+r 2 4 +r27 S 7 = r 7 +r 1 4 +r 5 +r 21 +r 2 3 +r28+r 3 I sp3
k.

Table A-3: Error Bit Generator Matrix

80 111 82 Ri3 84 86 86 87

e0  1 0 0 0 0 0 0 0

el 0 1 0 0 0 0 0 0

e2  0 0 1 0 0 0 0 0

es 0 0 0 1 0 0 0 0

e 4  0 0 0 0 1 0 0 0

e6  0 0 0 0 0 1 0 0

fe 0 0 0 0 0 0 1 0
e7  0 0 0 0 0 0 0 1

fe 1 1 0 0 0 0 0 0

e 0 1 1 0 0 0 0 0

e1o 0 0 1 1 0 0 0 0

ell 0 0 0 1 1 0 0 0

e 12  0 0 0 0 1 1 0 0

e Is 0 0 0 0 0 1 1 0

e 1 4 0 0 0 0 0 0 1 1

e~ 1 0 0 0 0 0 0 1

e18  1 0 1 0 0 0 0 0

e 17  0 1 0 1 0 0 0 0 0.,

fe 0 0 1 0 1 0 0 0

Cjg 0 0 0 1 0 1 0 0

f2 0  0 0 0 0 1 0 1 0

e2 l 0 0 0 0 0 1 0 1

2e 1 0 0 0 0 0 1 0

e23 0 1 0 0 0 0 0 1

f24 1 0 0 1 0 0 0 0

(26 0 1 0 0 1 0 0 0

e2 0 0 1 0 0 i 0 0

e 7  0 0 0 ! 0 0 I 0

et2  0 0 0 0 1 0 0 1

e2 1 0 0 0 0 1 0 0

e 80  0 1 0 0 0 0 1 0

ell 0 0 1 0 0 0 0 1

'-
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Corresponding error bit equations:
eC0  808S1*S 2 '8 3 *84 85*6 6 7  4!16 = SOS'2S'S*5S5S

el=8081'82'83'8686'87 e17 = OS*23S45S67

e 3  8081 82 *S3 *S4 8' 6 6 S7  e~g =OS,,,3'4S'6S

e4~ S''S 2 *S3 'S4 'S5S 6 ' 7  =2 8 0 S'2S 3 8 4 *S5 'S6 ' 7

e 5  S 0 'Sl'S 2 *S3 'S4 ' 6 S 6 ' 7  e 21  SO*S 1 'S-8 3 'S 4 -S 5 S 6 -S7

e6  SO' 1os82"83'84s586'87 e2=S' Is S2 'S3 S 4 "S5 6 'Ss7

e7 SO'SF2'S3 S4 'S5 'S8S 7  e 2 3  8 s 0 's I' S8 3 'S4 ' 6 6 S 7

e8 S= 8 0 S 28384*86'887 =2 808S1 8 2 S 3 .S4 S 5 'S6 S 7  '

eg = SOS*2S*4S'6S C2 5 =8 0 S1 82S 3 S 4 'S 5 'S687  4

el 0 =S*IS2S 3 'S4 'S5 S6 'S7  e 26 =SOS 1 *S.'S3 S4 S 5 S86 'S7

el= S 0 *S1 S 2 8 3 *S4 *8' 6 6 8 7  e2 7 =80 Sl82'S3S 4 'S5S6 'S7

e2= SO'S 1 s 2 'S 3 'S4 S5 -S 6 'S7  e2 SO*s1 8sq' 3 'S 4 s85 'S6 ' 7

e1 SO*Si S28384'85'S6'S7 =2 SO'1* 2 'S3 S4 'S5 *S6S7

e= SO'sI*S')S 3 *S4 's5S 8 7  =3 SO'SI'S2'S3 *S4 'S5 8S6 S

A-4'



APPENDIX B

GMAT Shell Script

',p

h.°

". o

#! /bin/sh

# DATE: 1 DEC 1987
# Version: 1.0

# NAME: gmat
# DESCRIPTION:
# This shell script run the Generic Microcode Assembler Tool (GMAT).
# It first calls preg to parse the translation file and write out
# the tailored C code. If the call to preg was successful, gmat
# copies assem.c into the directory and compiles the assembler.
# After compilation, gmat removes assem.c.# "*
# AUTHOR: Robert S. Hauser
# HISTORY:

echo Running preg
if /eng/87d/rhauser/bin/preg $1
then

echo Copying library source code into this directory
cp /eng/87d/rhauser/bin/assem. c assem. c;
echo Compiling your assembler
cc -O -o assem assem.c -1m;
echo Removing library source code
rm assem.c

else
echo Error in running preg.
echo

fi

.

B-I
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APPENDIX C

PREG C Code

* DATE: 1 DEC 1987
* Version: 1.0

'p * TITLE: Pre Gmat routine
* FILENAME: PREG.C
* COORDINATOR: Capt R W Linderman
* PROJECT: Generic Microcode Assembler Tool (GMAT)
* OPERATING SYSTEM: UNIX 4.3BSD
* LANGUAGE: C
* CONTENTS:
• get answer()
* get names()

build assem()
* get microformat()
* scan t file()
ATO:update blengths()

* AUTHOR: Robert S. Hauser
* HISTORY:

#include <stdio.h>
#define TRUE 1
#define FALSE 0

struct WD FIELD ENTRY(
char name[1000];
int literal;
int label;
int blength;1;

struct TENTRY[
char name[1000];
int blength;
W;

struct WDFIELDENTRY fields[1000];struct T_ENTRY tfields[1000];

FILE *tranfile,*gmathead;
char word[l000],answer[2];
int num sub-fields;
int num-wd fields,numt fields;
int bits in word;
int ok;

C-I
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int i,k,J;
char wordend[1000];
char field_nametmp[10001;
char empty[]- "
char fill[1000];
int ch;

main(argc,argv) int argc;char **argv;

if (argc !- 2)

printf("\nUsage: preg translation filename\n\n");
exit(l);I

if ((tranfile - fopen(arv[1,"r")) -- NULL)

printf("\nFile %s could not be found.\n\n",argv[l]);
exit(l);

get micro-format);
printf("\n");
scan t file();
update_blengths();
buildassem(argv[1]);

}/*end main*/

* DATE: 1 DEC 1987
* Version: 1.0

* -. * PROCEDURE: getnames()
* DESCRIPTION:

Reads translation file and pulls out the field name
% *

* PASSED VARIABLES:
" RETURNS:

t tfield name : name of field
t field blength : field length

* GLOBAL VARIABLES USED:
* EOF

S* ch
"* tranfile
) * numsubfields
* GLOBAL VARIABLES CHANGED:
• ch
* tranfile
* num sub fields
* FILES READ:
* tranfile
* FILES WRITTEN:
* MODULES CALLED:
* CALLING MODULES:

scan t file()

* AUTHOR: Robert S. Hauser
* HISTORY:

. . , ,, ,, ,,1
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, getnames(t field name,tfield blength)
char t field name [];

Sint *t_fieldblength;

char t field value[100];
num sub fields - 0;
for(;;)[

k j - 0;
ch - fgetc(tranfile);
while (ch -- ' ') ch - fgetc(tranfile); /* ignore leading blanks */
if (ch -- '\n'11 ch -- EOF) break;

/* if at end of blank line or file quit*/
while (ch !- '\n' && ch !- ' ')/* until EOL or blank */

if (num sub fields -= 0) t fieldname[k++] - ch;
ch = fgetc(tranfile);

if (num sub fields -- 0) t fieldname[k] -\0';
num -subfields++;
while (ch-- ' ') ch - fgetc(tranfile); /* skip blanks */
while (ch != '\n' && ch '- ' ')

if (num subfields -- 1) t_fieldvalue[j++] - ch;
ch - fgetc(tranfile);

if (num sub fields -- 1) *t field blength j;
/* ignore trailing blanks */-

while (ch-- ' ') ch - fgetc(tranfile); /* ignore trailing blanks */

******************************* * ********* *** ******* *

* DATE: 1 DEC 1987
* Version: 1.0
* PROCEDURE: buildassem()
* DESCRIPTION:
* Makes readtrans_table(, translate(, makereffile()

U *

* PASSED VARIABLES:
* filename : name of translation file
* RETURNS:
* GLOBAL VARIABLES USED:
* bits in word
* num wd fields
* GLOBAL VARIABLES CHANGED:
* FILES READ:
* FILES WRITTEN:
* assem.h
* assem.tailored
* MODULES CALLED:
* CALLING MODULES:

main()
*

* AUTHOR: Robert S. Hauser
* HISTORY:

C-3



build-assem(filename) char filename[);

int 1; p

* FILE *aheader,*atailored;
aheader - fopen("assem.h""1w11);
fprintf(aheader,"#define BitslnWord %d\n",bits-in-word);
for(i-O;i<numnt_fields;i++)

fprintf(aheader, "struct SYMBOLENTRY %stbl IMaxSubFields] ;\n",
t fields[i].name);

for(i-O;i~nun t fields;i++) -

fprintf(ahieader, "it nuin-fields%s;\n" ,t fields i] .name);

atailored -fopen( "assem. tailored", "w");

/****************make read trans table()**********
fprintf(atailored, "/*********************************Anf");

fprintf(atailored, "read-trans -table( \n[\n");
fprintf(atailored," char fill[lOOO] ,filll[lOOO] ;\n");
fprintf(atailored," symbolfile -= e("s\,"\)

\n" ,filename);
fprintf(atailored," fscanf(symbolfile,\"%%[-\\n]%%

for(i-~O;i~numn t fields;i++)
* fprintf(atailored," readin(%stbl, &nuxn-fields%s) ;\n"

,t fieldsj.name,t fields[i].name);
fprintf(atailored," fclose(symbolfile) ;\nl

/* end read-trans-table*/)

/*******************make translate()***********
fprintf(atailored, "\ntranslate( \nhl\n
fprintf(atailored, "stripped -fopen(stripfile,\"r\") ;\n");
fprintf(atailored, "transfile =fopen(trans file,\"w"\") ;\n");
fprintf(atailored, "fscanf(stripped,\"%%\s\" ,input) ;\n");
fprintf(atailored,"while(strcmp(END,input)!'0)\n(\n");

for(i=O;i~num wd fields;i++)

if (fields[i].literal -- TRUE)

fprintf(atailored," if (literal(lnput)--TRUE) \n");
*fprintf(atailored," fscanf(stripped,\"%%\s\"

,input) ;\n");
fprintf(atailored," else\n

if (fields~iI.label -- TRUE)

fprintf(aheader, "it lab -b -length -%d;\n" ,fields[i] .blength);
fprintf(atailored," if (symtrans(Labeltbl,

input,index to labels)==TRJE) \n");
p. fprintf(atailored," fscanf(stripped,\"%%\s\" ,input) ;\n");

fprintf(atailored," else\n

fprintf(atailored, "if(syrtrans(%stbl,input,num-fields%s)--TRUE)
fscanf(stripped,\"%%\s\",input);\n",fields[i] .narne,fields[i] .naxne);

...- > 1/* end for nuin-wd-fields *
C_ 4
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fprintf(atailored, "\nif(strcxnp(NQP,input) -- FALSE)
fscanf(stripped,\"%%\s\" ,input) ;\n");

fprintf(atailored, "\nif(input[1P'+') fprintf(transfile,\" +\\n\") ;\n");
fprintf (atailored, "\nelse\nprintf(\"\\nERROR: symbol

>%%\s< not defined\\n\" ,input) ;\n");
fprintf(atailored," fscanf(stripped,\"%%\s\" ,iflput) ;\n");
fprintf (atailored, "\n I\nfclose (transfile);

\nfclose(stripped);\n}/* end translate*An');

/**********make make reffile()***********
fprintf(atailored, "\nmake ref file( \nhl\n");
fprintf(atailored," char )

for(i=O;i~num-wd-fields;i++)

if (i!=O) fprintf(atailored,",");
fprintf(atailored, "t%d[%d+1] ",i, fields[i] .blength);

fpit~talrd";\nlistingfile - fopen lJfie,\ );)

fprintf(atailored, "\ntransfile - fopen(transjfile,\"'r\") I") ;
fprintf(atailored, "\nref file - fopen(r file,\"w\");");
fprintf(atailored, t\nfscanf(listifgfile,\"%%\[\ ;\] ;\\fl\" ,line)i;");
fprintf(atailA'ored, "\nwhile(strcmfp(END, line) !-O)\n(\n");
fprintf(atailored, "\n strcat(line,EOL2);");

fprintf(atailored, "\n fprintf(reffile,\"%%-50s\" ,line);");
fprintf(atailored, "\n fscanf(transfile,\"%%\[\-\]s\\n\" ,linel);");
fprintf(atailored, "\n sscanf(linel,\"")
for(i=O~i~num-wd-fields;i++)

fprintf(atailored,"%%%ds" ,fieldsli] .blength);

fprintflatailored,11\"1,");
for(i=O;i~nuin-wd-fields;i++)

if (i!O) fprintf(atailored,",");
fprintf(atailored, "t%d"i)

fprintf(atailored,");");
fprintf(atailored, "\n fprintf(reffile,\"\\n");
for(i-O;i~nuni-wd-fields i++)

I 
%..,

fprintf(atailored, "%%6s )

fprintf(atailored, "\\,)
for(i-O;i<nuxn-wd-fields;i++)

if (i-O) fprintf(atailored,",",);
fprintf (atailored, "t%d" ,i);

fprintf(atailored,");"f);
fprintf(atailored, "\nfscanf(listingfile,\"%%\

[\A;] ;\\n\",line);\n}\n");
fprintf(atailored, "\rnf (ranfile) en;\\;")
fprintf(atailored, "\nfclose(rf file);");
fprintf(atailored, "\nfclose(lisifile);");

fprintf(atailored,"\n)V*** end make reffile ****V/\n");



FVM.-NFIC-.1 I- A . -

make reverse -comnp()o**~
fprintf(atailored, "\nreverse comp( \n[\n
fprintf(atailored, "revfile -fopen(r file,\"w\") ;\n");
fprintf(atailored, "transfile - fopen(trans_file,\"r\") ;\n");

fprirtf(atailored,"for(i-0;i~line nnu-l;i-+)\n [\n");
fprintf(atailored, "fprintf(revfile,\"%%O.6d \ i;)
for(i-0;i<num wd fields;i++)

fprintf(atailored, "fscanf(transfile,\"%%%ds\" ,input);

if (fields[i].label -- TRUE) \"fed~].lnt)

fprintf(atailored, "if (revtrans(%stbl,input,num -fields%s)

fprintf(atailored,"(\nif (convert(input) !- 0)\n");
fprintf(atailored, "fprintf(revfile,\" %%\d(%%\s)\"

,convert(input),input);\n)\n");

else

fprintf(atailored, "revtrans(%stbl, input,num-fields%s) ;\n"
,fields[i].naine,fields[i].nane);

1/* end for num wd fields *
fprintf(atailored,"1 fscanf(transfile,\"%%\s\" ,input) ;\n");

fprintf(atailored," fprintf(revfile,\"\\l\" );");
fprintf(atailored, "\n]\nfclose(transfile);

\nfclose(revfile) ;\n}/* end reverse comp*/Nn")

J/*****end build assembly (

" DATE: 1 DEC 1987
" Version: 1.0
" PROCEDURE: get-micro-format()
" DESCRIPTION:

*Reads the first line of the translation file and
* pulls out the word format

" PASSED VARIABLES:
" RETURNS:
" GLOBAL VARIABLES USED:

* word
* fill
* wordend
* field name tmp
* field~s
* empty

*GLOBAL VARIABLES CHANGED:
* word
*fill

* wordend
*field -name tnp,

,~J. *fields

* empty

C-6



* FILES READ:
* tranfile
* FILES WRITTEN: 1
* MODULES CALLED: 0
* CALLING MODULES:
* main()

A .'* AUTHOR: Robert S. Hauser

* HISTORY: D

getmicroformat()

fscanf(tranfile,"%[r;];%[\ \n]",word,fill); \

printf("Microword format: %s " ,word);
num wd fields-0;
do

strcpy (wordend, empty);
sscanf(word,"%s%[\ ]%[-;]",fieldname tmp,fill,wordend);
strcpy(word,wordend);
if (index(fieldnametmp,'#')) fields[num wd fields].literal-TRUE;
if (index(fieldname tmp,':')) fields[num wd fields] label=TRUE;
sscanf(field_name_tmp, "% [-#: ", fields [num wd fields++] .name);

1/* for num fields */
while (strcmp(empty,word)!-O );/****end get -micro -format *****, "'

" DATE: 1 DEC 1987 P
Version: 1.0. .

* PROCEDURE: scan t file()..-
DESCRIPTION:

Reads the translation file and pulls out the
field names and put them in tfields

PASSED VARIABLES:
RETURNS:
GLOBAL VARIABLES USED:

* t fields
* GLOBAL VARIABLES CHANGED:
. t fields S
FILES READ:

* FILES WRITTEN:
* MODULES CALLED:
* getnames()
* CALLING MODULES:
. main()

* AUTHOR: Robert S. Hauser
* HISTORY:

scan t file()

num t fields-0;
do

getnames(tfields[numt fieldsl.name,
&tfields[num t fields] .blength);

num_t_fields++;

while(ch !- EOF);
." /***** end scanf t file *****/

C-7
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* DATE: I DEC 1987
. * Version: 1.0

' . * PROCEDURE : update blengths (
* DESCRIPTION-:

* Determines the number of bits in each field and*F the total number of bits in the word. ,

" PASSED VARIABLES : %,
" RETURNS :
" GLOBAL VARIABLES USED:

* num t fields

'p

* num -wd f ields k
* ~t fieldls,.-
* bits in word"."

GLOBAL VARIABLES CHANGED :
* t fields* rbiitsninword

*FILES READ: u b t

* FILES WRITTEN:

" MODULES CALLED: "
* CALLING MODULES:
* RE NmainS

* AUTHOR: Robert S. Hauser
* HISTORY:

update blengths ()[..

bitsbinword 0;

for(i*-;i<num t fields;i++)
for(j-*;jnum wd fields;j++)

i f ( strcmp ( t-fields [i ] .name, fields [j ] .name) -0)

fields [ j ].blength t tf "

* IE ED

* IE WITN
* OULSCALD

* CLLIG"ODUES



APPENDDX D

Code Created by PREG ."I

#define BitslnWord 60
struct SYMBOLENTRY BR SELtbl[MaxSubFields];
struct SYMBOLENTRY AL Utbi [MaxSubFields);
struct SYMBOLENTRY LOADFDtbl [MaxSubFields 3;
struct SYMBOLENTRY REGtb1 fMaxSubFields);
struct SYMBOLENTRY SPECFUNCTtb1[MaxSubFields];
struct SYMBOLENTRY WFTOPtbl[MaxSubFields);
struct SYMBOLENTRY PFADONEtb1 (MaxSubFields I;

4struct SYMBOLENTRY NXTADDRtb1 EMaxSubFieldsl;
int nuxn fieldsBRSEL;
int numnfieldsM;U;
int nuin fieldsLOADFD;
int numnfieldsREG;
int num n fieldsSPECFUNCT;
in* t nurn- fieldsFTOP;
int num fieldsPFADONE;
int nunm fieldsNXTADDR;
int lab-b-length =16;

read trans table()

char fill[iQO) ,filll[l00];
syrnbolfile - fopen( "t file", "r"

readin(BR_SELtbl,&nun- fieldsBR_SEL);
readin (ALE~tbl, &nuxn-fieldsALU);
readin(LOADFDtbl ,&num-fieldsLOAD-FD);
readin (REGtbl, &nuin fieldsREG);
readin(SPECFUNCTtbl,&num fieldsSPECFUNCT); 0

readin (WFTOPtbl, &num fieldsWFTOP);
Areadin(CPFADONEtb1, &num -fieldsPFADONE);
0'readin(NXTADDRtb1,&nun fieldsNXTADDR);

fclose(symibolfile);
* }/* end read-trans-table *

D- 1



4. translate()

stripped fopen(strip file,"r)
transfile =fopen(trans -file,"w");
fscanf(stripped, "%s" ,input);

10 if(symtrans(BRSELtb1, input,nuin fieldsBRSEL)--TRUE)
fscanf(stripped,7"%s" ,input);

if(symtrans(ALUtbl, input,nuxn-fieldsALU)--TRUE)
fscanf(stripped,"%s" ,input);

if (syintrans (LOAD _FDtbl ,input, numIn fieldsLOAD FD) --TRUE)
fscanf(stripped, "%s" ,input);-

if(syintrans(REGtbl, input,num-fieldsREG)--TRUE)
fscanf(stripped,"%s" ,input);

if( symtrans (RE~tip, nuni-fieldsREG )--TRUE) Ir
fscanf(stripped, "%s",input);

if( symtrans (REGtb1,input, num -fieldsREG )--TRUE)
fscanf(stripped, "%s" ,input);

if(symtrans(SPECFUNCTtbl, input,nuni fieldsSPECFUNCT)--TRUE)
fscanf(stripped, "%s" ,input);

if (symtrans (WTOPtb1,input, num -fieldsWFTOP )--TRUE)
fscanf(stripped, "%s",input);

if(syrntrans(PFADONEtbl, input,num fieldsPFADONE)=-TRJE)
if fscanf(stripped, "%s",input);

if(literal(input)--TRUE)
fscanf(stripped, "%s",input);

elser. if (syrtrans(Labeltbl,input,index to labels)--TRUE)
fscanf(stripped, "%s" ,input);

else
if( symtrans (NXT ADDRtbl,input, num fieldsNXTADDR )--TRUE)

fscanf(stripped, "%s"t ,input);

if(strcmp(NOP,input) -- FALSE) fscanf(stripped,"%s",input);

if(input[O]--'+') fprintf(transfile," +\n");

else
* printf("\nERROR: symbol >%s< not defined\n",input);

fscanf(stripped, "%s" ,input);

fclose(transfile);
fclose (stripped);
/*end translate*/

make-ref file()

char tO[9+l],tl[4+l],t2[l+],t3[5+],t4[5+],t5[5i1],
t6[13+l] ,t7[l+1] ,t8[1+l] ,t9[16+l];

listingfile - fopen(l file,"r');
transfile - fopen(trans_file,'r");
ref file - fopen(rfile,"w");

* *-,.*fscanf(listingfile,"%[';];\n",line);
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* while(strcmp(END, line) '-0)

strcat(line,EOL2);
fprintf(reffile, "%-S0s" ,line);
fscanf(transfile, "% [>]+\n" ,linel);
sscanjf(linel,"%9s%4s%ls%5s%5s%5s%13s%ls%ls%16s",tO,tl,t2,t3,

t4,t5,t6,t7,t8,t9);
fprintf(reffile,"\n%s %s %s %s %s %s %s %s %s %s \n",tO,tl,

t2,t3,t4,t5,t6,t7,t8,t9);

fsaflstnfl, [;;n"lnI
* fprintf(reffile, "end;\n");

fclose(transfile);
fclose(reffile);
fclose(listingfile);

/**end make-reffile**/

reverse comp()

revfile - fopen(r file,"w");
transfile - fopen(trans file,"r)
for(i-0;i~line-nun-lii++)

fprintf(revfile,"%0.6d "i);fscanf(transfile,"%9s",input);
revtrans(BR -SELtbl,input,num -fieldsBR-SEL);
fscanf(transfile, "%4s" ,input);

A revtrans(ALUtbl,input,num fieldsALU);
(0 fscanf(transfile, "%ls" ,input);

revtrans(LOAD FDtbl,input,num fieldsLOAD FD);
fscanf(transfile, "%5s" ,input);
revtrans (REGtbl,inu, nuxn fieldsREG);
fscanf(transfile, "%5s" ,input);
revtrans(REGtbl,input,num fieldsREG);
fscanf(transfile, "%5s" ,input);
revtrans(REr-tbl,input,nuxn fieldsREG);
fscanf(transfile, "%13s" ,input); a

revtrans(SPECFUNCTtbl,input,num -fieldsSPECFUNCT);
fscanf(transfile, "%ls" ,input);
revtrans(WFTOPtb1,input,num -fieldsWFTOP);
fscanf(transfile, "%is" ,input);
revtrans(PFADONEtbl,input,nun-fieldsPFADONE);
fscanf(transfile, "%16s" ,input);
if (revtrans(NXTADDRtbl, input,num-fieldsNXT-ADDR)--FALSE);

if (convert(input) !- 0)
fprintf(revfile," %d(%s)",convert(input),input);

fscanf(transfile, "%s" ,input);
fprintf(revfile, "\n")

fclose~transfile);
fclose(revfile);

1*end reverse comnp*/

D-
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APPENDIX E

Assembler Skeleton

* DATE: 1 DEC 1987
* Version: 1.0

* TITLE: Assembler Skeleton
* FILENAME: ASSEM.C
* COORDINATOR: Capt R W Linderman
* PROJECT: Generic Microcode Assembler Tool (GMAT)
* OPERATING SYSTEM: UNIX 4.3BSD
* LANGUAGE: C .

* CONTENTS:
* readin()
* symtrans()
* literal()
* itobs()
* convert()
* revtrans()
* vhdlout()
* strip()
* make xromaddrs()

*AUTHOR: Robert S. Hauser
*HISTORY:

#include <stdio. h>
#include <math.h>
#define EOL
#define EOL2
#define MaxFieldName 100
#define MaxFileName 100
#define MaxValueLength 100
#define MaxSubFields 100
#define MaxSubFieldLength 100
#define MaxLineLength 100
#define MaxLabelLength 100
#define MaxLabels 100
#define TRUE 1 a

#define FALSE 0

struct SYMBOLENTRY[
char SuibField[MaxSubField.Length];
char Value[MaxValueLength];

*~ rl



FILE *revfile, *symibolfile,*stripped,*tralsfile;
FILE *reffile, *xromaddrs, *infile, *listingfile;

char strip file[MaxFileNafe] ,i file[MaxFileName];
char 1_file fMaxFileNamfe] ,rfileMaxFileName];
char trans file[MaxFileNane] ,a file[MaxFileNafe], vfile[MaxFileName];
char line [MaxLineLength] ,line-no-lab [MaxLineLength];
char linel (MaxLineLengthl;
char temp [MaxLineLength] ,label [MaxLabelLength];
char LABELarray [MaxLabels] [MaxLabelLengthll;
char input[MaxSubFieldLength];
char line numl[MaxValueLength];
char slice[MaxValueLeflgth];
char tchar;

char remove[50];

char END[]-"end";
char END2 [) -"end;;
char LST[]".lst'1;
char MC[]=".xnc";
char REF[]=1.ref";
char STRIP [] -".strip";
char TRANS]-".trans";
char VHDL[]-".vhd";
char ADDR[]="'.addr";
char NOP [ -I'nop";
char COL[-':';

int LABELaddr[MaxLabels];
mnt i,j,k,index-to-labels;
int line nuxn,label nwn;
mnt xrom length;
mnt nuin,base, indexa;
mnt ch;
in t b length;
int generate-xromaddrs, reverse comnpile,generate-vhdl;
int clean;

struct SYMBOLENTRY Labeltbl[MaxSubFieldslj;
#include "assexn.h"

main(argc,argv) mnt argz_;
char **argjv;

line nun -0;
label nun - 0;
index to labels =1;

generate -xromaddrs - FALSE;
reverse compile - FALSE;
generate-vhdl -FALSE;

clean -TRUE;
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if ((argc < 2)11kargc > 3))

printf("\n\nUsage: assen file name [xvrd]\n\n");
- exit(l);

if (argc -- 3) /* then options *
if inearv2,x) NL)gnrt rmdr-TRE
if (index(argv[2],'x') !-NULL) generatexromddrs TR TRUE
if (index(argv[2].'r') !-NULL) reverse compile =TRUE;

if (index(arg-v[2],'d') '=NULL) clean =FALSE;

1;cyifleagvl)
strcpy(ifile,argv[1]);

strcat(lfile,LST);
strcpy(rfile,argv[l]);
strcat (r~file,REF);
strcpy(stripfile,argv[lJ);
strcat( strip file, STRIP);
strcpy(trans_file,argjv[1]);
strcat(trans_file,TRANS);

strcpy(vfile,argv[lj);
strcat(vfile,VHDL);
strcpy(afile,arcjvl]);
strcat (a file, ADDR);

stripo;
read-trans -tableo;
translateo;
make-ref fileo;
if (generate xromaddrs)

make xromaddrso;
if (reverse-compile)

reverse comp();
if (generate vhdl)

vhdl outo;

if (clean)

strcpy(remove,"m I');
strcat(remove,trans_file);
strcat(remove,"")
strcat(remove, strip file);

U, system(remove);

.1 J/*end main program *

E,-3

e %



* DATE: 1 DEC 1987
* Version: 1.0
* PROCEDURE: readin()
* DESCRIPTION:
* This procedure reads in the translation file one char
* at a time to get the field name and the value.

PASSED VARIABLES: none
*RETURNS :

t_field : pointer to structure for field
num sub fields : number of fields found

* GLOBAL VARIBLES USED:
* symbolfile
* GLOBAL VARIBLES CHANGED:
* FILES READ:
* symbolfile : program name for the translation file
* FILES WRITTEN:
* MODULES CALLED:
* CALLING MODULES:
* read trans table

* AUTHOR: Robert S. Hauser
* HISTORY:

readin(tfield,nunsub fields)
struct SYMBOLENTRY t field[];
int *num sub fields;t

i = 0;
for(;;)

k j - 0;

ch = fgetc(symbolfile);
while (ch -= ' ') ch fgetc(symbolfile); /* ignore leading blanks */
if (ch -- '\n' H ch -- EOF)

*num sub fields - i;
break; /* if at end of blank line or file quit*/I

while (ch !- '\n' && ch '- ' ')/* until EOL or blank */(
t_field[i].SubField[k++] - ch;
ch - fgetc(symbolfile);I

t field[i].SubField[k] - 1\0f

while (ch -- ') ch - fgetc(symbolfile); /* skip blanks */
while (ch !- '\n' && ch !- '

t_field[i].Value[j++] - ch;
ch - fgetc(symbolfile);
I

t_field[i++].Value[j] -\01;
while (ch -- e) ch - fgetc(symbolfile); /* ignore trailing blanks */

.' -.:.. 1/* end readin */
S FEA



* DATE: 1 DEC 1987
• Version: 1.0
• PROCEDURE: symtrans()
% DESCRIPTION:

This procedure searches a table for a sysbol. If the symbol
*is found then the translation is written out, if not the
* default is written out.

* PASSED VARIABLES:
• tablename : pointer to table
* symbol : symbol to look for
* lentbl : length of the table
* RETURNS:
* GLOBAL VARIBLES USED:
* transfile
* GLOBAL VARIBLES CHANGED:
• FILES READ:
* FILES WRITTEN:
• transfile
* MODULES CALLED:
* CALLING MODULES:
• translate()

* AUTHOR: Robert S. Hauser
* HISTORY:

4. int symtrans(tablename,symbol,lentbl) struct SYMBOLENTRY tablename[];
char symbol[];
int lentbl;
t

int sindex,found;
found - FALSE;
for(sindex=0; (sindex<=lentbl)&&(found=-FALSE);)

if (strcmp(tablename[sindex++] . SubField, symbol)==0)

found - TRUE;
I
if (found--FALSE)
f

fprintf(transfile, "%s",tablename[0] .Value);return(FALSE); 
NI

else

fprintf(transfile, "%s" ,tablename[sindex-1] .Value);
return(TRUE);

1/* end symtrans */
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* DATE: 1 DEC 1987
* Version: 1.0
* PROCEDURE: literal()
* DESCRIPTION:

This procedure determines if the symbol is a literal. If so
it prints out the value. If not it return FALSE.

* PASSED VARIABLES: symbol
* RETURNS:
* TRUE : if symbol was a literal
* FALSE : if symbol was not a literal .'
* GLOBAL VARIBLES USED:
* GLOBAL VARIBLES CHANGED:
* FILES READ:
* FILES WRITTEN: .'-
* MODULES CALLED:
* CALLING MODULES:
* translate()

* AUTHOR: Robert S. Hauser
* HISTORY:

int literal(symbol) char symbol[];

int lindex;
if (symbol[o -=

for(lindex-l;lindex<(strlen(symbol));lindex++)
fprintf(transfile, "%c" ,symbol[lindex]);

return(TRUE);
I
else

return(FALSE);
I/* end literal */

* DATE: 1 DEC 1987
* Version: 1.0
* PROCEDURE: itobs()
* DESCRIPTION:
* This procedure converts an integer to a binary string.

* PASSED VARIABLES:

number : integer value
* lab-b length : label field length
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* RETURNS:
* b_string binary string
* GLOBAL VARIBLES USED:
* GLOBAL VARIBLES CHANGED:
* FILES READ:
* FILES WRITTEN:
* MODULES CALLED: -

* CALLING MODULES:
* strip()

* AUTHQR: Robert S. Hauser
HISTORY:

itobs(number,b string,lab b length) int number;
char bstring[]; int lab-b length;

int index8;
int index9;

- b string[lab b length-'\0';
for(index9-0,index8-lab b length-l;index8>-0;index8--,index9++)

if ((int)(number/pow((double)2,(double)index8)) >=l)

b_string [index9]-'l';
number - number - (int)pow((double)2,(double)index8);

else

b_string[index9]='0';
I

S/* end itobs */

* DATE: 1 DEC 1987
* Version: 1.0
* PROCEDURE: convert()
* DESCRIPTION:
* This procedure return the integer value of the string input

* PASSED VARIABLES:
* slice : binary string of 1/0
* RETURNS:
* num: the integer value
* GLOBAL VARIBLES USED:
* GLOBAL VARIBLES CHANGED:
* FILES READ:
* FILES WRITTEN:
* MODULES CALLED:
* CALLING MODULES:
* revtrans()

* AUTHOR: Robert S. Hauser
* HISTORY:

long convert(slice)char slice[];
[

long num;
int i,j;



num - O;
for(i-strlen(slice)-l,J-0;i>-0;i--,J++)

if (slice[i]--'i')
num- num + (int)pow((double)2,(double)j);

1*nreturn(num);
end convert */

* DATE: 1 DEC 1987* Version: 1.0

* PROCEDURE: revtrans()
* DESCRIPTION:
* This k ocedure takes a value and prints the field name

* PASSED V<'IABLES:
tablename : pointer to a table

RETUNS: symbol : value to translate
lentbl : table length* RETURNS:

* GLOBAL VARIBLES USED:
* revfile
* GLOBAL VARIBLES CHANGED:
* FILES READ:
* revfile
* FILES WRITTEN:* MODULES CALLED:
* CALLING MODU LES:

ftreverse-comp(

AUTHOR: Robert S. Hauser
HISTORY:

int revtrans(tablename,symbol,lentbl) struct SYMBOLENTRY tablename[];
char symbol [];
int lentbl;

* [
int rindex, found;
found = FALSE;
for(rindex-0;(rindex<=lentbl)&&(found--FALSE);)
{

if (strcmp(tablename[rindex++].Value,symbol)==0)
found = TRUE;}

if (rindex--l)
return(FALSE);~else

fprintf(revfile,"%s ",tablename[rindex-l].SubField);
return(TRUE);

*, }/*end revtrans */

* DATE: 1 DEC 1987
* Version: 1.0
* PROCEDURE: vhdl out()
* DESCRIPTION:
* This procedure reads the translated file and output a VHDL
* description of the ROM.

% %



* PASSED VARIABLES: none
* RETURNS: X
* GLOBAL VARIBLES USED:

* Bits InWord
*~ vfile

* GLOBAL VARIBLES CHANGED:
* FILES READ:

* trans-file :file of translated mcode
*FILES WRITTEN:

* - vhdl file :VHDL description
*MODULES CALLED: .
*CALLING MODULES:

* main()

*AUTHOR: Robert S. Hauser
*HISTORY:

vhdl-out()

FILE *data,*vhdl_file;
mnt word_num;
char xrom word[BitslnWord+l];
char eol[2];

data - fopen(trans file,"r");
vhdl-file - fopen(vfile,"lw");

fprintf(vhdl file, "package AN XROM is\n");
fprintf(vhdl file," type WORD_%d is array (%d downto 0)

of bit\;\n",BitslnWord,BitslnWord-l),
fprintf(vhdl-file," type ROM-ARRAY is array (0 to %d)

of WORD %d\;\n" ,line-num-1,BitslnWord);
fprintf(vhdl file," function GETWORD (WORD NUMBER : integer)\n"); ~
fprintf (vhdl file," return WORD_-%d is\n",BitslnWord);
fprintf(vhdl file," variable XROM : ROM ARRAY \;\n");
fprintf(vhdl-file," variable RETURNWORD :WORD-%d \;\n",

BitslnWord);
fprintf(vhdl-file," begin\n");

word nun -0; -.

while(fscanf(data,"%s %s",xrom-word,eol) !-EOF)

fprintf(vhdl_file," XROM(%d) : \%\"\
word-nuxn++,xrom-word);

fprintf(vhdl file," RETURNWORD :-XROM(WORDNUMBER);\n");

fprintf (vhdl file," return (RETURN WORD) ;\n");

fprintf (vhdl file," end GETWORD;\n");
fprintf(vhdl-file, end ANXROM\;\n");

DATE: 1 DEC 1987I
*PROCEDURE: strip()
*DESCRIPTION:

* This procedure reads the microcode and strips off the
E-91
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* delimiters and converts the labels into integer valued
* binary strings. It also makes a listing file and check
* for the exsistence of the input file.

* PASSED VARIAB3LES: none
* *'..'. * RETURNS:

*GLOBAL VARIBLES USED:
* strip file
*~ lfile
* i-fi le

* - line
*line num *
* line_no lab
*line numi
* END2
* EOL
* Labeltbl

* * GLOBAL VARIBLES CHANGED:
* line
*line num
* line no lab
*line numl
* Label1tbl

*FILES READ:
* infile

*FILES WRITTEN:

* listingfile

* MODULES CALLED:
** CALLING MODULES:

* main()

C* AUTHOR: Robert S. Hauser
* HISTORY:

strip()

stripped - fopen(strip file, "w");
if ((infile - fopen(i file,"r")) -- NULL)

printf("\nFile %s could not be found.\n\n",i file);
exit(l);

listingfile - fopen(l file, "w");

fscanf(infile, "% [ ] ',line);
strcat(line,EOL2);
while(strcmp(END2,line) '=0)

if (index(line,':') !NULL)

sscanf(line,"%V:] %[]",label,line_no lab);
strcpy(Labeltbl [index to Tlabels] .SubFieldi,label);
itobs(line num,line numl, lab b length);
strcpy(Labeltbl [index to-labeils++] .Value,linenuml);
LABELaddr[label nun] - line num;

* strcpy(LABELarray[label_nun++] ,label);

if (index(line,':') !- NULL)

sLtrcatlaJLIel,COL).J;
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fprintf(listingfile, "%O.6d %1l5s%s;\n"1,line-num++,
label,line-no-lab);

fprintf(stripped, "%s %s\n',line-no-lab,EOL);

else

fprintf( listingfile, "%O.6d
%s\n",line-num++,line);

fprintf(stripped, "%s %s\n" ,line,EOL);

fscanf(infile, "%[V\n]\n" ,line);
fscanf(infile,"%[ ;I\n",line);
strcat(line,EOL2);

fprintf(stripped, "%s\n" ,END);
fprintf(listingfile, "%s\n" ,END2);

fclose(listingfile);
fclose(stripped);

)/*end strip *

* DATE: 1 DEC 1987
* Version: 1.0

*PROCEDURE: makexromaddrso(
*DESCRIPTION:

* This procedure reads the translated file and build the
* XROM compiler input file.

* PASSED VARIABLES: none
* RETURNS:
* GLOBAL VARIBLES USED:

* trans file
* BitslniWord

" GLOBAL VARIBLES CHANGED:
" FILES READ:

* trans-file
*FILES WRITTEN:

* xromaddrs
*MODULES CALLED:

* convert(
*CALLING MODULES:

* main()

*AUTHOR: Robert S. Hauser
*HISTORY: -

make xromaddrs()

transfile - fopen(trans file, "r");
xromaddrs - fopen(afile,"w");

* xrom length -(int)( BitslnWord/4);

while(fscanf(transfile,"%[-+]+ \n",line) !-EOF)

for(base-0;base( (4*xroi length) ;base -base+xrom-length)

E-11
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slic~indxa]linebas~indxa.

sliceindex~base-.5.l

num -convrt~sicep
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APPENDIX F

Microcode Translation File

BRSEL ALU LOADFD REG REG REG SPECJFUNCT ATTOP PFADONE NXTADDR #

BRSEL 000000000
RET 000000001

CALL 000000010
iMP 000000011

CALLCR 000010110
CALLCE 000100110

CALLnZ 001001110

JGE 000111111

JnZ 001001111
JnZ 0010013111
JZ 001000111

JnOP 001011111

Jn4DN 001101111

JnWD 001111111

JnECol 010001111

JnECo2 010011111

JnECo3 010101111

Jnll 010111111

Jn12 011001111

Jn13 011011111

Jn21 011101111

Jn22 011111111

Jn23 100001111

Jn31 100011111

Jn32 100101111

Jn33 100111111

JnEU 101001111

JnEUI 101011111

JnEU2 101101111

JnEU3 101111111

JnEC 110001111
10

JnECI 110011111

JnEC2 110101111
JnEC3 110111111

JnPE 111001111

JnPEI 111011111

JnPE2 111101111

JnPE3 111111111

ALL' 0000

F-I
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~.COMP 0001
AND 0010
XOR 0011
OR 0100
MOV 0101

S& 0110
RCY 0111
INC 1000
DEC 1001
ADDC 1010
ADD 1011
SUB 1101
SUBB 1110

LOAD-FD 0
LOAD1

REG 00000
ECCCI 00001
ECCC2 00010
ECCC3 00011
ECCUi 00100
ECCU2 00101
ECCU3 00110
PEl 00111

PE2 01000

PE3 01000

%VD 1 01010
%VD12 01011
WD 13 01100
WD21 01101
WD22 01110
VVD23 01111
NVD3 1 10000
WD32 10001
WvD33 10010
TSR 10011
PSR 10100
HE2 10101
Psi 10110
PS2 10111
PS3 11000 -

ELR 11001
NCR 11010
CCR 11011
TEMPO 11100
TOUT 11101
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SPECFUNCT 0000000000000
Flip 1000000000000

Loadlnit 0100000000000
FlipLoadinit 1100000000000
Lo~adScale 0010000000000

LoadPSi 0001000000000

ShjftTSR 0000100000000

LPSISTSR 0001100000000

ShjftPSR 0000010000000

LoadELR 0000001000000
HostCntl 0000000100000
LDStateR 1 0000000010010

LDStateR2 0000000001010

LDStateR3 0000000000110 ge
LDState 0000000000010

DriveScale 0000000000001 /
d5

WTTOP 0

WFTop 1

PFADONE 0

PFAdone 1 *5"

NXTADDR 0 0-0

-3
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APPENDIX G

Microcode Word Format
2'

BITS

0-8 BRSEL(9) - Branch Select Field

0-4 CMS(5) - Conditional Mux Select
0 None
1 Reconfigure
2 Error
3 : N e g a t i v e 

". ' '

4 Zero
5 PFAoperate
6 4DONE
7 Watch Dog Error (WD_.ERR)
8 Error in Col 1 (ErrColl)
9. Error in Col 2 (ErrCol2)
10 Error in Col 2 (ErrCol2)
11: Watch Dog Error II (WDI)..
12 Watch Dog Error 12 (WD12)
13 Watch Dog Error 13 (WDI3)
14 Watch Dog Error 21 (WD21)
15 Watch Dog Error 22 (WD22)
1I: Watch Dog Error 23 (WvD23)

17, Watch Dog Error 31 (WD31) 
%

18 Watch Dog Error 32 (WD32)
19: Watch Dog Error 33 (WD33)
20o EU g
21 ECCUI
22 ECCU2

23ECCU3
24 EC
25 ECCCI
26 ECCC2
27 ECCC3
28 PE
29 PEI
30 PE2
31 PE3

5 BRON(1) - Branch On
0 Positive Logic
I Negative Logic

6-8 NAF(3) - Next Address Field
0 Continue
I Return
2 Call
3 Unconditional Branch
4 Conditional Datapath Load

G-1
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5 Conditional Return
•. "6 Conditional Call

7 Conditional Branch

9-12 ALU(4) - ALU Function Select
- 0 nop

I C= A'
2 C - A and B
3 C -A xor B
4 C -A or B
5 C- A (mov)
6 Set Carry Flag
7 Reset Carry Flag
8 C -A + I
9 C -A- I
10 C A + B + cy
11 C-A + B
12 not defined
13 C - A- B
14 C - A - B - br "4
1.5 A - B

13 LOAD-FIELD(I) - Load Next Address Field to C Bus
0 No Load
I Load

14-18 ABUS-SEL(5) - A Bus Select
0 none
1-29 Registers 1-19
30-31 not defined

19-23 BBUSSEL(5) - B Bus Select
0 none
1-29 Registers 1-19
30-31 not defined

24-28 CBUSSEL(5) - C Bus Select
0 none
1-29 Registers 1-19
30-31 not defined

.1
29-41 SPEC.FUNCT(13) - Special Functions
bit
0(MSB) Flip Memories
I Load Initial Scale Factors
2 Load Scale Factors from WFTs
3 Load Problem Status Registers
4 Shift Temp Scale Register
5 Shift Permanent Scale Register
6 Load Error Location Register
7 Host Control
8 Load State into Row 1
9 Load State into Row 2 -4

10 Load State into Row 3
S11 Load State
12 Drive Scale Factors

42 VvFTOP() -WFT Operate

: -,. ,,-
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0. WFTop'
I1 WFTop

43 PFADONE(I) - PFA Don -,ignal
0. PFAdone'

- 1. PFAdone

44-59 NXT..ADDR9(16) - Next Address Field k Literal for Datapath

.G-



UNCLASSIFIED !
SECURITY CLASSF CA-'ON OF 'HIS :aC7 I

REPORT DOCUMENTATION PAGE Form Approved%Iia. REPORT SECURITY CLASSIFICATION 1b RESTRICTIVE MARKINGS
~:' Uclassified______________ _______

2a. SECURITY CLASSIFICATiON AUTHORITY 3 D)ISTRIBUT ON/AVAjLABILiTY OF REPORT

2b. ECLSSIICATONDOWGRADNG CHEULEApproved for public release,
2b. ECLSSIICATN. OWNRADIG S-IEULEdistribut ion unlimited.

4. PERFORMING ORGANIZATiON REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

.AFIT /G CE/ENG /8 7D- 5

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. N4AME OF MONITORING ORGANIZATON
(If applicable)

School of Engineering AF IT /E NG
6c. ADDRESS C~ty, State, and ZIP Code) bADDRESS City,, State. and ZIP Code)

Air Force Institute of Technology
Wright-Patterson, AFB, OH 45433-6583

Ba. NAME OF FUNDING, SPONSORING 8 b. OFFICE SYMBOL 9 PROCLREMEN7 NSTRUMENT !IDENTIFICATION NUMBER
QRGANZAT ON Ofic of(If applicable)

-i =n- 'r- Pi- r- - IAFOSR/XP
8c. ADDRESS (City, State, anid ZIP Code) '0 SOURCE OF ;LNDiNG NUMBERS

Bolling, AFB, Washington D. C. 20332 -'ROGRAM IPROjECT TASK IWORK JNlT
EMENT NO O O0 ACCE:SSION NO.

11 . TITLE (Include Security Cassification)

See Box 19
12. PERSONAL AUTHOR(S) e

Robert S. Hauser, B.S. Commuter Eng ieering, 2Lt, USAF
3a. TYPE OF REPORT 13 .MrvE COVERED 4 . DATE OF REPORT \Year, Month, Day) 15. PAGE COUNT

* M.S. Thesis zROM ____ O __ ecember 1987 154
* 16, SUPPLEMENTARY NOTA7!ON

17, COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by blocic numoer)
FELD jGROUP SUB-GROUP

09 02VLSI, Discrete Fourier Transform,
Winograd Fourier Transform

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

T"itle: Design and Implementation of a VLSI Prime Factor Algorithm
Processorw

-Thesis Chairman: Richard W. Linderman, Captain, USAF
Assistant Professor of Electrical and Computer Engineering a

A!-

W20DISTRIBUTION AV-LAS LiTY O ABSRAU- 2 AB7A-SCRi, LS CA- ON
CRUNC-ASS;c ED INLMi-ED E SAIVE AS '10 DTIC iSEPS nlsi e(

22a NAME OF QESPONSBLE NDIVID.-S 2 EPCEInclude Area C:oe) 22c 0;; CE- SV'BO)L

Ricar i1j-Tnrl, r-r P -int ;Iin T71 _ 3-255-3576 ~ IT

DD Form 1473, JUN 86 Previous editicns are obsoiere SEC'-PI- CLASS.F CA-ON OF -- S PAGE
UNCLASSIFIED

N * '~. ~- 2 X .. -.. *** % ******* .B'**.%**' * .%



UNCLASSIFIED -.

(block 18 continued)
Application Specific Processor, Fault Tolerance

(block 19 continued)

Abstract

High-speed digital signal processing has a wide range of applications including,
radar, sonar, image processing, and target acquisition. The calculation of the Discrete
Fourier Transform (DFT) used in these applications has long been a significant
bottleneck for high-speed processing. Previous AFIT students have adopted a Prime Fac-
tor Algorithm (PFA) method using Winograd Fourier Transform (WFT) processors.
Three WFT processors are pipelined into a system capable of computing a 4080-point
DFT on complex data approxiniately every 120 microseconds when operating with a 70
M1Hz clock.

This thesis effort addressed the design and implementation of PFA controller chip
and interconnecting memor- modules bet'-een the WFT processors. The PFA controller
is an application specific processor to control the flow of information in the pipeline,
interface to the WFT processors, monitor pipeline status, and take corrective action in
the presence of faults. The interconnecting memory modules buffer the data coming out .

of a WFT processor and going into another allowing concurrent reading and writing. .

The PFA controller chip was designed, simulated, and submitted for fabrication
through MOSIS. Twenty-eight 16-bit registers store the pipeline information. An
arithmetic/logic unit (ALU) computes data transformations. A read only memory stores
the microcode. A control sequencer sequences through ;he proper code segments. Finally,
special circuitry interprets the fault information and reconfigures the pipeline.

This thesis effort included writing a microcode assembler to to raise the user inter-
face to the AFIT-XROM silicon compiler. Raising the user's level of abstraction to
mnemonic microcode, while still providing an error free path to silicon layout, reduces
chances for error in the microcode specification. A generic microcode assembler tool was
created as an extension for use with other application specific processors. This tools gen-
erates a microcode assembler from a word format and a translation file. The assembler
will output a file compatible with the XROM compiler, a VHDL description of the
XCROM, a listing file, a reference file, and a reverse assembly. This tool was tested on two
other AFIT theses and a computer architecture class.

A prototype memory chip was designed and fabricated in 3 micron CMOS through
MOSIS to test the 1-transistor memory cell, the wordline selectors, and the sense
amplifiers. Simulations predict an access time of iOns. A larger memory was designed,
simulated, and submitted for fabrication through MOSIS. It contains storage for 272
words of 32 bits each. It is dual ported and permits concurrent reading and writing of 24
bit data. The memory also includes error control circuitry for single error correction and
double error detection.
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